【FastGPT 】FastGPT 的知识库逻辑

FastGPT结合向量搜索和大模型实现知识库问答。其知识库逻辑基于向量相似度和大模型的上下文理解,通过数据收集、预处理和模型训练构建。在检索机制中,使用向量检索器和语义判断,依赖于向量方案、高效索引和大模型推理。技术实现涉及PostgresSQL的PG Vector插件和MongoDB的数据存储。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FastGPT 的知识库逻辑

FastGPT的知识库逻辑主要围绕“向量搜索 + 大模型 = 知识库问答”的公式展开。以下是关于FastGPT知识库逻辑的一些关键点:

  1. 基础概念

    • 向量:将人类的语言(文字、图片、视频等)转换为计算机可识别的语言(数组)。
    • 向量相似度:计算两个向量之间的相似度,表示两种语言的相似程度。
    • 语言大模型的特性:上下文理解、总结和推理。
  2. 知识库构建

    • 数据收集:从互联网上收集大量的文本数据,包括维基百科、新闻文章、论坛帖子等。
    • 数据预处理:对收集到的数据进行预处理,如分词、去除停用词、标记化等,以便将文本转换为模型可以理解的形式。
    • 模型训练:使用预处理后的数据,将其输入到GPT模型中进行训练。GPT模型是一个基于Transformer架构的神经网络模型,通过多层的自注意力机制来学习文本之间的关系和语义信息。
  3. 知识库问答

    • QA问答对存储:FastGPT采用QA问答对进行存储,而不仅是文本分块(chunk)处理。这样做是为了减少向量化内容的长度&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值