这里写自定义目录标题
FastGPT 的知识库逻辑
FastGPT的知识库逻辑主要围绕“向量搜索 + 大模型 = 知识库问答”的公式展开。以下是关于FastGPT知识库逻辑的一些关键点:
-
基础概念:
- 向量:将人类的语言(文字、图片、视频等)转换为计算机可识别的语言(数组)。
- 向量相似度:计算两个向量之间的相似度,表示两种语言的相似程度。
- 语言大模型的特性:上下文理解、总结和推理。
-
知识库构建:
- 数据收集:从互联网上收集大量的文本数据,包括维基百科、新闻文章、论坛帖子等。
- 数据预处理:对收集到的数据进行预处理,如分词、去除停用词、标记化等,以便将文本转换为模型可以理解的形式。
- 模型训练:使用预处理后的数据,将其输入到GPT模型中进行训练。GPT模型是一个基于Transformer架构的神经网络模型,通过多层的自注意力机制来学习文本之间的关系和语义信息。
-
知识库问答:
- QA问答对存储:FastGPT采用QA问答对进行存储,而不仅是文本分块(chunk)处理。这样做是为了减少向量化内容的长度&#x