用机器学习做kaggle 房价预测时,特征工程后的特征有三百多个,要降维,决定用XGBoostregressor .由于特征太多在后面可视化遇到了些问题,先说一下我特征选择的大致过程,再说遇到的问题
- 代码如下
import xgboost as xgb
from xgboost import XGBRegressor
model = XGBRegressor()
model = model.fit(x_train, y_train, verbose=2)
#model.feature_importances_ 是一个array,里面是特征重要程度得分
# 我们要把 feature_importances 和他对应的特征名关联上
# 于是把 feature_importances 转为DF格式
importance = pd.DataFrame({"Feature Importance":model.feature_importances_}, index=all_data.drop(["SalePrice"],axis=1).columns)
#get_fscore() 也可以得到特征重要程度得分
import matplotlib
import matplotlib.pyplot as plt
importance.sort_values("Feature Importance",ascending=False).round(5)
## 获取重要程度不等于0的系数指标
importance[importance["Feature Importance"] !=0 ].sort_values("Feature Importance").plot(kind="barh",figsize=(12,40), color='g')
plt.xticks(rotation=90)
# 最后特征选择的是那些得分不等于0的特征,这个可以自行设定
XG_index = importance[importance["Feature Importance"] !=0 ].index
XG_val = importance[importance["Feature Importance"] !=0 ].values
importance = pd.DataFrame(XG_val, columns = ['Feature Importance'], index = XG_index)
# 看一下选择后的特征大小
display(importance.shape)
# 再排个序看看
importance.sort_values("Feature Importance",ascending=False).round(5)
# 最后获得由选择后的特征构成的数据集
choose_cols = importance.index.tolist()
choose_cols.append("SalePrice")
choose_data = all_data[choose_cols].copy()
- 遇到的问题:最开始使用plot_importance 出问题,发现特征排序的图显示不出来,出现警告⚠️,Matplotlib is currently using agg, which is a non-GUI
- 解决方法1⃣️,导入matplotlib 时加上
-
import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt
- 但是这样,虽然没有错误警告,图还是画不出来,jupyter 的内核还崩了,我想应该是特征太多了的原因,三百多个。于是放弃用plot_importance
- 先把重要的特征筛选出来了再可视化(代码见最开始)