用XGBoost 做特征选择,遇到的问题及解决办法。Matplotlib is currently using agg, which is a non-GUI。

用机器学习做kaggle 房价预测时,特征工程后的特征有三百多个,要降维,决定用XGBoostregressor .由于特征太多在后面可视化遇到了些问题,先说一下我特征选择的大致过程,再说遇到的问题

  • 代码如下

import xgboost as xgb
from xgboost import XGBRegressor
model = XGBRegressor()
model = model.fit(x_train, y_train, verbose=2)
#model.feature_importances_ 是一个array,里面是特征重要程度得分
# 我们要把 feature_importances 和他对应的特征名关联上
# 于是把 feature_importances 转为DF格式
importance = pd.DataFrame({"Feature Importance":model.feature_importances_}, index=all_data.drop(["SalePrice"],axis=1).columns) 
#get_fscore() 也可以得到特征重要程度得分

import matplotlib
import matplotlib.pyplot as plt
importance.sort_values("Feature Importance",ascending=False).round(5)   
## 获取重要程度不等于0的系数指标
importance[importance["Feature Importance"] !=0 ].sort_values("Feature Importance").plot(kind="barh",figsize=(12,40), color='g')
plt.xticks(rotation=90)

# 最后特征选择的是那些得分不等于0的特征,这个可以自行设定
XG_index = importance[importance["Feature Importance"] !=0 ].index
XG_val = importance[importance["Feature Importance"] !=0 ].values
importance = pd.DataFrame(XG_val, columns = ['Feature Importance'], index = XG_index)

# 看一下选择后的特征大小
display(importance.shape)

# 再排个序看看
importance.sort_values("Feature Importance",ascending=False).round(5)

# 最后获得由选择后的特征构成的数据集
choose_cols = importance.index.tolist()
choose_cols.append("SalePrice")
choose_data = all_data[choose_cols].copy()
  • 遇到的问题:最开始使用plot_importance 出问题,发现特征排序的图显示不出来,出现警告⚠️,Matplotlib is currently using agg, which is a non-GUI
  • 解决方法1⃣️,导入matplotlib 时加上
  • import matplotlib
    matplotlib.use('TkAgg')
    import matplotlib.pyplot as plt
  • 但是这样,虽然没有错误警告,图还是画不出来,jupyter 的内核还崩了,我想应该是特征太多了的原因,三百多个。于是放弃用plot_importance
  • 先把重要的特征筛选出来了再可视化(代码见最开始)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值