FLink
文章平均质量分 79
一只楠喃
一只大数据路上的程序媛️BUT目前处于自动驾驶仿真行业
展开
-
Flink从Kafka获取数据写入MySQL的实现
Kafka->flink -> mysql原创 2022-04-24 09:17:36 · 3088 阅读 · 1 评论 -
Flink1.12-End-to-End Exactly-Once一次性语义
流处理引擎通常为应用程序提供了三种数据处理语义:最多一次、至少一次和精确一次。如下是对这些不同处理语义的宽松定义(一致性由弱到强):At most noce < At least once < Exactly once < End to End Exactly onceAt-most-once-最多一次有可能会有数据丢失这本质上是简单的恢复方式,也就是直接从失败处的下个数据开始恢复程序,之前的失败数据处理就不管了。可以保证数据或事件最多由应用程序中的所有算子处理一次。这意味着如果原创 2021-07-02 15:51:51 · 602 阅读 · 0 评论 -
Flink1.12之双流Join详解
双流Join是Flink面试的高频问题:Join大体分类只有两种:Window Join和Interval Join。Window Join又可以根据Window的类型细分出3种:Tumbling Window JoinSliding Window JoinSession Widnow JoinWindows类型的join都是利用window的机制,先将数据缓存在Window State中,当窗口触发计算时,执行join操作。interval join也是利用state存储数据再处理,区别在于原创 2021-06-29 17:57:09 · 959 阅读 · 1 评论 -
Flink1.12-四大基石详解
Flink之所以能这么流行,离不开它最重要的四个基石:Checkpoint、State、Time、Window。Flink-Window在流处理应用中,数据是连续不断的,有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页。在这种情况下,我们必须定义一个窗口(window),用来收集最近1分钟内的数据,并对这个窗口内的数据进行计算。1.1 按照time和count分类time-window:时间窗口:根据时间划分窗口,如:每xx分钟统计最近xx分钟的数据...原创 2021-06-29 11:47:32 · 888 阅读 · 0 评论