Windows系统上Anaconda创建虚拟环境安装cuda、cudnn、pytorch

一、Conda创建虚拟环境

指定虚拟环境名称(conda create -n xxxx)和python版本(python=x.x)

conda create -n mypytorch python=3.9

二、安装cuDNN 和CUDA

1.先更新显卡驱动

安装NVIDIA显卡驱动

直接进NVIDIA官网:NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA

2.激活环境conda activate mypytoch(自己设置的虚拟环境名称)

3.执行以下命令添加清华源到Anaconda的下载源加快下载速度

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/


conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/


conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/


conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/


conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/

4.输入以下代码,安装cuDNN和cuda

conda install cudnn

安装cuDNN的同时,conda会安装对应版本的CUDA

5.等待下载完成,查看安装结果

conda list

三、Anaconda安装Pytorch

Pytorch官网中选择对应版本,

红框显示先前版本,我的是cuda 11.1,寻找对应版本的cuda

复制到命令窗口

下载

问题

ERROR: No matching distribution found for torchyision==0.11.2+cu111

换一个CUDA11.1:

pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

在python检验pytorch是否可用

import torch

print(torch.__version__) #查看pytorch版本

print(torch.cuda.is_available()) #查看cuda是否可用 输出为True 或者False

​​​​​​​四、pycharm导入虚拟环境

conda是一个流行的Python包管理工具,它允许你在项目中创建独立的软件环境,以便管理和隔离不同的依赖项。如果你想在Conda环境中安装CUDA(Compute Unified Device Architecture)和CUDNNCUDA Deep Neural Network Library),这是一个针对GPU加速深度学习的库,你可以按照以下步骤操作: 1. **创建新环境**: 首先,你需要激活一个现有的或创建一个新的Conda环境。例如,如果你想要创建一个名为`cuda_env`的新环境,运行: ``` conda create -n cuda_env python=3.8 # 指定Python版本,其他版本替换相应数值 conda activate cuda_env ``` 2. **安装CUDA**: CUDA通常需要从NVIDIA官网下载对应系统安装文件,然后通过命令行(如`bash`或`powershell`)手动安装。由于这是特定于平台的操作,你可以在官方文档中找到适合你系统安装指南。安装完成后,添加CUDA路径到系统环境变量。 3. **安装CuDNN**: CuDNN同样需要单独下载并安装。首先在NVIDIA Developer网站上获取CuDNN,然后解压。接着,在Conda环境中安装,可以使用`conda install cudnn`,但是这取决于CuDNN是否提供conda包。如果没有,你可能需要将头文件和库手动链接到你的环境。 4. **验证安装**: 安装完成后,你可以使用`nvcc --version`检查CUDA编译器,`python -c "import torch; print(torch.cuda.is_available())"`测试是否能导入Cuda模块,并确认Cudnn是否可用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值