1、为什么需要图计算
- 许多大数据以大规模图或网络的形式呈现
- 许多非图结构的大数据,常会被转换为图模型进行分析
- 图数据结构很好地表达了数据之间的关联性
2、图的概念
2.1 图的基本概念及应用场景
图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种网状数据结构
- 通常表示为二元组:Gragh=(V,E)
- 可以对事物之间的关系建模
应用场景
- 在地图应用中寻找最短路径
- 社交网络关系
- 网页间超链接关系
2.2 图的术语
2.2.1 顶点(Vertex)和边(Edge)
一般关系图中,事物为顶点,关系为边
定义一个图:
Graph=(V,E)
集合V={
v1,v2,v3}
集合E={
(v1,v2),(v1,v3),(v2,v3)}
2.2.2 有向图和无向图
- 有向图:在有向图中,一条边的两个顶点一般扮演者不同的角色,比如父子关系、页面A连接向页面B;
G=(V,E)
V={
A,B,C,D,E}
E={
<A,B>,<B,C>,<B,D>,<C,E>,<D,A>,<E,D>} //关系用尖括号表示
- 无向图:在一个无向图中,边没有方向,即关系都是对等的,比如qq中的好友。
G=(V,E)
V={
A,B,C,D,E}
E={
(A,B),(A,D),(B,C),(B,D),(C,E),(D,E)}
2.2.3 有环图和无环图
- 有环图:包含一系列顶点连接的回路(环路),有环图是包含循环的,一系列顶点连接成一个环,在有环图中,如果不关心终止条件,算法可能永远在环上执行,无法退出。
- 无环图:不包含循环,不能形成环,DAG即为有向无环图
2.2.4 度
指一个顶点所有边的数量。
- 出度:指从当前顶点指向其他顶点的边的数量
- 入度:其他顶点指向当前顶点的边的数量
2.3 图的经典表示法
邻接矩阵:
1、对于每条边,矩阵中相应单元格值为1
2、对于每个循环,矩阵中相应单元格值为2,方便在行或列上求得顶点度数
3、Spark GraphX
3.1 简介
-
GraphX是Spark提供分布式图计算API
-
GraphX特点:
- 基于内存实现了数据的复用与快速读取
- 通过弹性分布式属性图(Property Graph)统一了图视图与表视图
- 与Spark Streaming、Spark SQL和Spark MLlib等无缝衔接
-
针对某些领域,如社交网络、语言建模等,graph-parallel系统可以高效地执行复杂的图形算法,比一般的data-parallel系统更快
-
Graphx是将graph-parallel的data-parallel统一到一个系统中。允许用户将数据当成一个图或一个集合RDD,而简化数据移动或复杂操作。
3.2 GraphX核心抽象
-
弹性分布式属性图(Resilient Distributed Property Graph)
- 顶点和边都带属性的有向多重图
- 一份物理存储,两种视图
对Graph视图的所有操作,最终都会转换成其关联的Table视图的RDD操作来完成。
3.3 GraphX API
- Graph[VD,ED]
- VertexRDD[VD]
- EdgeRDD[ED]
- EdgeTriplet[VD,ED]
- Edge:样例类
- VertexId:Long的别名
maven工程需要下载依赖:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_2.11</artifactId>
<version>2.1.1</version>
</dependency>
import org.apache.spark.graphx.{
Edge, Graph}
import org.apache.spark.rdd.RDD
import org.apache.spark.{
SparkConf, SparkContext}
object GraphxDemo1 {
def main(args: Array[String]): Unit = {
val conf :SparkConf= new SparkConf().setAppName("graphxDemo1").setMaster("local[2]")
val sc = SparkContext.getOrCreate(conf)
//创建vertices顶点rdd,(1L,1)中的1L代表顶点,1代表该顶点的属性
val vd:RDD[(Long,Int)]=sc.makeRDD(Seq((1L,1),(2L,2),(3L,3)))
//创建edges边rdd,(Edge(1L,2L,1)中的1L和2L代表顶点,1代表两顶点间的关系
val ed:RDD[Edge[Int]]=sc.makeRDD(Seq(Edge(1L,2L,1),Edge(2L,3L,2)))
//创建graph对象
val graph=Graph(vd,ed)
//获取graph图对象的顶点信息
graph.vertices.collect.foreach(println)
graph.vertices.foreach(x=>println(s"${x._1}-->${x._2}"))
//获取graph图对象的边信息
graph.edges.collect.foreach(println)
graph.edges.foreach(x=>println(s"src:${x.srcId},dst:${x.dstId},attr:${x.attr}"))
//获取顶点和边的整体信息
graph.triplets.collect.foreach(println)
}
}
/*
(2,2)
(1,1)
(3,3)
1-->1
3-->3
2-->2
Edge(1,2,1)
Edge(2,3,2)
src:1,dst:2,attr:1
src:2,dst:3,attr:2
((1,1),(2,2),1)
((2,2),(3,3),2)
*/
关于vertices、edges、triplets所表示的含义如下图:
Spark shell需要导入Spark Graph包
//导入Spark Graph包
scala> import org.apache.spark.graphx._
//通过文件加载
followers.txt内容是
2 3
1 4
3 2
4 3
scala> val graphLoad=GraphLoader.edgeListFile(sc,"file:///root/test/followers.txt")
graphLoad: org.apache.spark.graphx.Graph[Int,Int] = org.apache.spark.graphx.impl.GraphImpl@6d0c8cd0
scala> graphLoad.vertices.collect
res6: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((4,1), (1,1), (3,1), (2,1))
scala> graphLoad.edges.collect
res7: Array[org.apache.spark.graphx.Edge[Int]] = Array(Edge(1,4,1), Edge(2,3,1), Edge(3,2,1), Edge(4,3,1))
scala> graphLoad.triplets.collect
res8: Array[org.apache.spark.graphx.EdgeTriplet[Int,Int]] = Array(((1,1),(4,1),1), ((2,1),(3,1),1), ((3,1),(2,1),1), ((4,1),(3,1),1))
属性图应用示例:构建用户合作关系属性图
- 顶点属性:用户名、职业
- 边属性:合作关系
import org.apache.spark.graphx.{
Edge, Graph}
import org.apache.spark.rdd.RDD
import org.apache.spark.{
SparkConf, SparkContext}
object GraphDemo2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[1]").setAppName("graphDemo2")
val sc = SparkContext.getOrCreate(conf)
val user:RDD[(Long,(String,String))] = sc.parallelize(Array((3L,("rxin","student")),(7L,("jgonzal","postdoc")),(5L,("franklin","professor")),(2L,("istoica","professor"))))
val relationship:RDD[Edge[String]]=sc.parallelize(Array(Edge(3L,7L,"Collaborator"),Edge(5L,3L,"Advisor"),Edge(2L,5L,"Colleague"),Edge(5L,7L,"PI")))
val graphUser=Graph(user,relationship)
graphUser.vertices.collect.foreach(println)
graphUser.edges.collect.foreach(println)
graphUser.triplets.collect.foreach(println)
}
}
/*
(3,(rxin,student))
(7,(jgonzal,postdoc))
(5,(franklin,professor))
(2,(istoica,professor))
Edge(2,5,Colleague)
Edge(3,7,Collaborator)
Edge(5,3,Advisor)
Edge(5,7,PI)
((2,(istoica,professor)),(5,(franklin,professor)),Colleague)
((3,(rxin,student)),(7,(jgonzal,postdoc)),Collaborator)
((5,(franklin,professor)),(3,(rxin,student)),Advisor)
((5,(franklin,professor)),(7,(jgonzal,postdoc)),PI)
*/
属性图应用示例:
- 构建用户社交网络关系
- 顶点:用户名、年龄
- 边:打call次数
- 找出大于30岁的用户
- 假设打call超过5次,表示真爱。请找出他(她)们
import org.apache.spark.graphx.{
Edge, EdgeTriplet, Graph}
import org.apache.spark.rdd.RDD
import org.apache.spark.{
SparkConf, SparkContext}
object GraphDemo3 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[1]").setAppName("graphDemo3")
val sc = SparkContext.getOrCreate(conf)
//构建用户社交网络关系
val user:RDD[(Long,(String,Int))] = sc.parallelize(
Array(
(1L, ("Alice", 28)),
(2L, ("Bob", 27)),
(3L, ("Charlie", 65)),
(4L, ("David", 42)),
(5L, ("Ed", 55)),
(6L, ("Fran", 50))
))
val userCall:RDD[Edge[Int]] = sc.parallelize(
Array(
Edge(2L, 1L, 7