Spark Graphx 进行团伙的识别(community detection)

本文通过Spark GraphX演示了如何在金融科技领域的风控中进行设备团伙挖掘。利用LabelPropagation算法处理亿级别设备关联网络,展示了分布式计算在处理大规模图分析的优势。提供的GitHub链接分享了一个简单的GraphX代码示例,实际应用则需要结合更多策略。
摘要由CSDN通过智能技术生成

最近在使用Spark Graphx,拿Graphx做了点实验。对大规模图常见的分析方法有连通图挖掘,团伙挖掘等。在金融科技领域,尤其风控领域,会有各种重要的关联网络,并且这种网络图十分庞大。 所以,Spark Graphx这种分布式计算框架十分适合这种场景。下面以设备间关联网络(节点数亿级别)为例,采用Graphx做一个设备团伙挖掘demo。团伙识别的算法采用的是Graphx自带的LabelPropagation算法。

下面的是Graphx示例代码(仅仅是demo):

其中输入文件格式:

A B weight

备注(A,B 代表设备id,String类型,weight:int,关联代表权重)

因为Graphx节点类型只支持Long,不支持String,所以,需要进行相应的转换,这里用到的广播变量进行idmap。

github链接: https://github.com/dylan-fan/spark_graphx_community_detection

package com.org.test

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.graphx._
import scala.collection.mutable.Set

object DeviceCom {
  def main(a
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值