最近在使用Spark Graphx,拿Graphx做了点实验。对大规模图常见的分析方法有连通图挖掘,团伙挖掘等。在金融科技领域,尤其风控领域,会有各种重要的关联网络,并且这种网络图十分庞大。 所以,Spark Graphx这种分布式计算框架十分适合这种场景。下面以设备间关联网络(节点数亿级别)为例,采用Graphx做一个设备团伙挖掘demo。团伙识别的算法采用的是Graphx自带的LabelPropagation算法。
下面的是Graphx示例代码(仅仅是demo):
其中输入文件格式:
A B weight
备注(A,B 代表设备id,String类型,weight:int,关联代表权重)
因为Graphx节点类型只支持Long,不支持String,所以,需要进行相应的转换,这里用到的广播变量进行idmap。
github链接: https://github.com/dylan-fan/spark_graphx_community_detection
package com.org.test
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.graphx._
import scala.collection.mutable.Set
object DeviceCom {
def main(a