目录
必修一
一、集合
1.集合的概念
集合={元素1,元素2,…}
2.集合的性质
确定性(集合的元素是确定的)
{身高170的人} √
{身高较高的人} ×
互异性(一个集合中的元素是不重复出现的)
{0,1,2,3,4,4,5} ×
无序性(只要构成两个集合的元素相同,两个集合就是相等的)
{0,1,2,3,4,5}与{1,2,3,4,0,5}是相等的
3.数学中常用数集
(1)全体非负整数组成的集合称为非负整数集(或自然数集):N
(2)所有正整数组成的集合称为正整数集 :N*或N+
(3)全体整数组成的集合称为整数集: Z
(4)全体有理数组成的集合称为有理数集: Q
(5)全体实数组成的集合称为实数集: R
4.描述集合的方法
列举法
{0,1,2,3,4}
{西瓜,香蕉,苹果,菠萝}
描述法
D = { x ∈ R ∣ x < 10 } \mathbf{D}=\{x∈R|x<10\} D={ x∈R∣x<10}
图像法
韦恩图(Venn图):
区间法
x ∈ [ 1 , 5 ] x∈[1,5] x∈[1,5]
5.集合间的基本关系
子集
对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则这两个集合有包含关系,称集合A为集合B的子集,记作:
A ⊆ B (或 A ⊇ B ) A \subseteq B(或A \supseteq B) A⊆B(或A⊇B)
读作“A含于B”(或“B包含A”)
如果 A ⊆ B B ⊆ A A \subseteq B\\B \subseteq A A⊆BB⊆A那么集合A与集合B相等,记作: A = B A=B A=B
子集个数:2n(n为元素个数)
真子集
如果 A ⊆ B A \subseteq B A⊆B但存在 A ∈ B ,且 a ∉ A A\in B,且a\notin A A∈B,且a∈/A我们称集合A是集合B的真子集,记作:
A ⊊ B (或 B ⊋ A ) A\subsetneq B(或B\supsetneq A) A⊊B(或B⊋A)
真子集个数:2n-1(n为元素个数)
空集
我们把不含任何元素的集合称为空集,记作: ∅ \varnothing ∅空集是任何集合的子集。
6.集合的基本运算
并集
A ∪ B = { x ∣ x ∈ A , 或 x ∈ B } \mathbf{A∪B}=\{x|x∈A,或x∈B\} A∪B={ x∣x