四平方和
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
解析
C++题解
方法一:
由题可知aa<=N/4,bb<=N/3,cc<=N/2,dd<=N,那么我们就可以四层循环来做,但一个很明显的问题就是会T。然后就是各种神奇的优化,比如说让aa<=50,bb<=500。
#include <bits/stdc++.h>
using namespace std;
int N;
int main() {
cin >> N;
for(int a=0; a*a<=50; a++) {
for(int b=a; b*b<=500; b++) {
if(b*b > N) break;
for(int c=b; c*c<=N/2; c++) {
if(c*c > N) break;
for(int d=c; d*d<=N; d++) {
if(d*d > N) break;
if(a*a+b*b+c*c+d*d == N) {
printf("%d %d %d %d\n", a, b, c, d);
return 0;
}
}
}
}
}
return 0;
}
方法二:
我们可以事先处理cc+dd,把结果存起来,用map把结果与c或者d形成映射。然后再枚举a、b,用N-aa-bb来得到cc+dd,判断预处理里面有没有,有的话在N-aa-bb-c*c开方求出d即可。
#include <bits/stdc++.h>
using namespace std;
map<int, int> Map;
int N;
int main() {
scanf("%d", &N);
for(int c=0; c*c<=N/2; ++c)
for(int d=c; c*c+d*d<=N; ++d)
if(Map.find(c*c+d*d) == Map.end())
Map[c*c+d*d] = c;
for(int a=0; a*a<=N/4; ++a) {
for(int b=a; a*a+b*b<=N/2; ++b) {
if(Map.find(N-a*a-b*b) != Map.end()) {
int c = Map[N-a*a-b*b];
int d = (int)sqrt(N-a*a-b*b-c*c);
printf("%d %d %d %d\n", a, b, c, d);
return 0;
}
}
}
return 0;
}
Java 题解
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
for(int i=0;i*i<=n;i++)
for(int j=i;j*j<=n-i*i;j++)
for(int x=j;x*x<=n-i*i-j*j;x++)
for(int y=x;y*y<=n-i*i-j*j-x*x;y++)
if(i*i+j*j+x*x+y*y==n) {
System.out.println(i+" "+j+" "+x+" "+y);
return;
}
}
}