8.四平方和

四平方和

四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。

比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)

对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法

程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开

例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。

解析

C++题解

方法一:

由题可知aa<=N/4,bb<=N/3,cc<=N/2,dd<=N,那么我们就可以四层循环来做,但一个很明显的问题就是会T。然后就是各种神奇的优化,比如说让aa<=50,bb<=500。

 #include <bits/stdc++.h>
  using namespace std;
  
  int N;
  
  int main() {
      cin >> N;
      for(int a=0; a*a<=50; a++) {
          for(int b=a; b*b<=500; b++) {
            if(b*b > N) break;
             for(int c=b; c*c<=N/2; c++) {
                if(c*c > N) break;
                 for(int d=c; d*d<=N; d++) {
                     if(d*d > N) break;
                    if(a*a+b*b+c*c+d*d == N) {
                         printf("%d %d %d %d\n", a, b, c, d);
                        return 0;
                    }
                 }
             }
         }
     }
     return 0;
 }

方法二:

我们可以事先处理cc+dd,把结果存起来,用map把结果与c或者d形成映射。然后再枚举a、b,用N-aa-bb来得到cc+dd,判断预处理里面有没有,有的话在N-aa-bb-c*c开方求出d即可。

 #include <bits/stdc++.h>
  using namespace std;
 
  map<int, int> Map;
  int N;
  
  int main() {
      scanf("%d", &N);
      for(int c=0; c*c<=N/2; ++c)
         for(int d=c; c*c+d*d<=N; ++d)
            if(Map.find(c*c+d*d) == Map.end())
                 Map[c*c+d*d] = c;
     for(int a=0; a*a<=N/4; ++a) {
         for(int b=a; a*a+b*b<=N/2; ++b) {
             if(Map.find(N-a*a-b*b) != Map.end()) {
                int c = Map[N-a*a-b*b];
                 int d = (int)sqrt(N-a*a-b*b-c*c);
                 printf("%d %d %d %d\n", a, b, c, d);
                 return 0;
             }
         }
     }
     return 0;
 }

Java 题解

public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int n = in.nextInt();
		for(int i=0;i*i<=n;i++)
			for(int j=i;j*j<=n-i*i;j++)
				for(int x=j;x*x<=n-i*i-j*j;x++)
					for(int y=x;y*y<=n-i*i-j*j-x*x;y++)
						if(i*i+j*j+x*x+y*y==n) {
							System.out.println(i+" "+j+" "+x+" "+y);
							return;
						}
 
	}
 
}

### 关于平方和定理的C++实现 对于平方和定理,在C++中的实现可以采用多种方法来解决。一种常见的做法是利用动态规划的方法,这种方法易于理解实现。 #### 动态规划解法 通过构建一个向量`cntPerfectSquares`存储到达每一个值所需的最少完全平方量。遍历从1到目标值n的过程中,尝试减去所有可能的完全平方,并记录下最小的结果加上当这个完全平方作为新的最优解[^2]。 ```cpp class Solution { public: int numSquares(int n) { if (n <= 0) { return 0; } vector<int> cntPerfectSquares(n + 1, INT_MAX); cntPerfectSquares[0] = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j * j <= i; ++j) { cntPerfectSquares[i] = min(cntPerfectSquares[i], cntPerfectSquares[i - j * j] + 1); } } return cntPerfectSquares[n]; } }; ``` 此代码片段展示了如何使用动态规划的思想求解给定正整n能表示成几个完全平方的形式下的最小量。 另外还有一种基于学性质判断的方式,该方式能够快速排除一些特殊情况从而减少不必要的计算开销。例如当某个数除以4余7时,则其必定由个完全平方组成;如果某本身就是完全平方则只需一次即可完成分解等特性被用来优化算法性能[^3]。 ```cpp bool checkSpecialCase(int n){ while (n % 4 == 0) n /= 4; return !(n % 8 == 7); } // 判断是否为完全平方 bool isSquare(int m){ int root = sqrt(m); return root*root == m; } ``` 上述辅助函可用于进一步简化主逻辑流程并提高效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值