最近开启了研一阶段,在上数值分析的课。
课后习题需要用二分法求解近似值,以满足最大允许误差。
计算过程就想到用python偷个懒,不过我的代码质量是真的low,好久没用py好多知识都忘光了,不过亲测可用。
代码如下:
import math
import pprint
# 题目为用二分法求 x**3-2*x-5 在区间[2,3]上的根,要求误差不超过0.5/1000
# f(x) = pow(x,3) - 2*x - 5
a = 2 # 区间上限
b = 3 # 区间下限
e = 0.5 / 1000 # 允许误差
def jisuancishu(a1, b1, e1):
err = math.log(e1, math.e)
x = math.log(b1 - a1, math.e)
t = math.log(2, math.e)
m = (x - err) / t - 1
if (m % 1 == 0): # 由于是误差可以取等号,考虑刚好相等的情况
return int(m)
else:
return int(m) + 1
def sim(x):
return pow(x,3) - 2*x - 5
num = jisuancishu(a, b, e)
print(num)
qujian = []
for i in range(1, num + 2):
if i == 1:
s1 = a
s2 = b
s3 = (s1 + s2) / 2
qujian.append(f"{i},{s1, s2},{s3}")
else:
# 异号取前
if sim(s3) * sim(s1) < 0:
s2 = s3
s3 = (s1 + s3) / 2
# qujian.append(f"{i},{s1, s2},{s3},{s2 - s3}")
qujian.append(f"{i},{s1, s2},{s3},{sim(s3)},{s2 - s3}")
# 同号取后
elif sim(s3) * sim(s1) > 0:
s1 = s3
s3 = (s2 + s3) / 2
# qujian.append(f"{i},{s1, s2},{s3},{s2 - s3}")
qujian.append(f"{i},{s1, s2},{s3},{sim(s3)},{s2 - s3}")
elif sim(s3) == 0:
# qujian.append(f"{i},{s1, s2},{s3},{s2 - s3}")
qujian.append(f"{i},{s1, s2},{s3},{sim(s3)},{s2 - s3}")
break
pprint.pprint(qujian)