统计、语言类模型
文章平均质量分 79
SEM、Copula、结构方程、meta、贝叶斯、混合效应模型、R语言、MATLAB、PyTorch、Python、
weixin_贾
如果没有特别的幸运,那就请特别的努力!!
展开
-
AI大语言模型进阶应用及模型优化、本地化部署、从0-1搭建、智能体构建技术
第一章、ChatGPT-4o使用进阶1、基于思维链(Chain of Thought)公式的提示词优化(思维链的概念、提示词优化策略与技巧)2、(实操演练)利用思维链方法优化提示词,提升对话质量3、GPTs逆向工程:提示词破解(提示词逆向工程的基本原理、分析和破解提示词的方法)4、(实操演练)对常见GPTs提示词进行逆向工程5、提示词保护策略以及防止提示词被破解的方法6、(实操演练)构建坚不可摧的GPTs:设计一个安全的提示词。原创 2024-11-04 16:16:52 · 575 阅读 · 0 评论 -
2024最新R语言结构方程模型(SEM)在生态学领域中的实践应用
(1)SEM的定义、生态学领域应用及历史回顾(2)SEM的基本结构(3)SEM的估计方法(4)SEM的路径规则(5)SEM路径参数的含义(6)SEM分析样本量及模型可识别规则(7)SEM构建基本流程。原创 2024-10-17 11:57:25 · 889 阅读 · 0 评论 -
寻找科学问题、R-Meta多手段全流程分析与Meta高级绘图、多层次分层嵌套模型构建与Meta回归诊断、贝叶斯网络、MCMC参数优化及不确定性分析、Meta数据缺失值处理的六种方法与结果可靠性分析、
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。3)统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)4)Meta回归和普通回归、混合效应模型的对比及结果分析。原创 2024-10-16 11:22:01 · 610 阅读 · 0 评论 -
空间数据计量分析、大尺度时间序列分析与突变检测、空间数据插值、空间数据建模、机器学习空间预测、多种机器学习集成技术、空间升降尺度技术、模拟偏差订正技术以及数据可视化和知识图谱
1) NetCDF、GeoTIFF、HDF、IMG、DWG、DEM等多维时空数据的读取、处理与导出。2、AI大模型助力R语言空间做图——image、levelplot、spplot。2、AI大模型助力R语言空间专题图——tmap、leaflet。1) 机器学习模型的构建(数据标准化、数据分割、超参数优化)1、AI大模型助力R语言空间做图——ggplot2。1、AI大模型助力R语言空间做图——plot。1) 时空大数据缺失值、重复值、异常值处理。2) 空间矢量数据的坐标系定义、转换。原创 2024-10-16 10:35:41 · 379 阅读 · 0 评论 -
ChatGPT与R语言融合技术在生态环境数据统计分析、绘图、模型中的实践与进阶应用
1)非约束排序(PCA、PCoA、NMDS)分析:模型选择、结果解读及绘图。3.Meta分析效应值(累积/平均):随机效应模型、固定效应模型、森林图等。2) 二项分布(0,1)混合效应模型:数据检查、模型构建、结果展示。4.GPT辅助系统发育相关数据分析案例:模型构建、模型比较、模型诊断等。1) 基础绘图类型:散点图、箱线图、频率图、提琴图、峰峦图、相关图等。2.GPT辅助空间自相关数据分析案例:模型构建、模型比较、模型诊断等。3.GPT辅助时间自相关数据分析案例:模型构建、模型比较、模型诊断等。原创 2024-10-14 10:57:34 · 707 阅读 · 0 评论 -
R语言生物群落(生态)数据统计分析与绘图实践技术
生物群落数据多样而复杂,涉及众多统计分析方法。课程的主要特点为聚焦生态学研究领域,从R语言基础操作和作图、数据准备整理,到各种数量分析方法的应用情景分析,实现从数据整理到分析结果展示的完整科学研究数据分析过程,将《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》及《统计结果作图》进行了组合(7合1)。4)广义线性混合效应模型分析计数数据及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型。原创 2024-10-12 10:41:11 · 1147 阅读 · 0 评论 -
“AI大模型+”多技术融合:赋能自然科学暨ChatGPT在地学、GIS、气象、农业、生态与环境领域中的高级应用
以ChatGPT-4o代表AI大语言模型引领了新一波人工智能浪潮,也在自然科学各个过程中提升生产力,本课程通过生物、地球、农业、气象、生态、环境、GIS科学领域中的大量案例,结合数据、文本、图片、代码、语音、视频等不同形式的数据、模式和内容,讲解自然科研的全流程,通过大模型辅助编写Python和R语言代码以及大模型API二次开发等技术对案例进行实现,带领大家快速进入科研新范式。5)主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。原创 2024-08-22 10:23:08 · 367 阅读 · 0 评论 -
基于R语言遥感随机森林建模与空间预测
因此,遥感随机森林建模与空间预测的应用能够有效提升遥感数据分析的精度和可靠性,是许多研究者关注的热点。在R语言中,随机森林的实现与应用非常方便,R语言提供了多种包用于构建和优化随机森林模型。此外,R语言在数据可视化方面的优势使得用户能够直观地展示模型的结果和变量的重要性,进一步提高了分析的可解释性和应用价值。因此,R语言中的随机森林工具因其易用性、灵活性和强大的功能,成为遥感数据分析中不可或缺的工具。(2)R语言基础语法与数据结构,包括:程序包安装、加载、更新,数据读取与输出,ggplot2常规画图等。原创 2024-08-20 13:50:59 · 694 阅读 · 0 评论 -
从R语言出发:BIOMOD2与机器学习在物种分布模拟中的实践探索
特征变量选择: 通过相关性分析、主成分分析(PCA)等方法选择具有代表性的特征变量,提高模型效率。R语言重点工具入门:数据输入与输出、科学计算、地理数据分析、数据可视化等功能。生态模型基础:介绍生态模型的基本概念和物种分布模型(SDMs)的重要性。模型评估方法:通过ROC曲线、AUC值等方法评估模型的有效性和准确性。物种分布特征预测: 基于单一模型与集成模型预测物种未来分布特征。实际操作:构建第一个物种分布模型,包括选择模型类型和调整参数。种分布特征、环境变量与物种分布关系、未来分布特征预测。原创 2024-07-07 19:39:45 · 226 阅读 · 0 评论 -
基于ChatGPT-4o自然科学研究全流程实践技术应用
案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图。5)主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。2)数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)6)支持向量机、决策树、随机森林、XGBoost、AdaBoost、LightGBM、高斯过程。原创 2024-06-19 10:39:43 · 833 阅读 · 0 评论 -
基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析实践技术
它集成了多种统计和机器学习方法,如GLM、GAM、SVM等,允许用户预测和分析物种在不同环境条件下的地理分布。理解物种分布模型(SDMs)的理论基础,包括模型的种类、用途以及在生态研究和环境管理中的应用。在R环境中有效地使用BIOMOD2软件包,包括数据准备、模型构建、模型评估和结果解释。获取、处理和分析环境与物种数据的能力,包括数据清洗、变量选择和模型优化。生态模型基础:介绍生态模型的基本概念和物种分布模型(SDMs)的重要性。物种分布特征预测: 基于单一模型与集成模型预测物种未来分布特征。原创 2024-06-05 17:28:53 · 691 阅读 · 0 评论 -
利用Copula函数及ChatGPT进行水文气候分析、气象数据处理、气象时序预测
在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。大多数情况下变量间的相关性非常复杂,而且随着变量取值的变化而变化,而这些相关系数都是全局性的,因此无法提供变量间相关性变化的细节;Copula不但可以提供不同取值范围内变量间相关的结构和函数细节,而且可以应用于相关时间序列及回归分析的研究中,大大拓展了回归及时间序列分析的适用范围。相对于相关系数,Copula理论比较深奥不易掌握,需要借助专门的软件或工具,运用规范的统计学方法才能得到正确的结果。原创 2024-05-07 14:24:38 · 913 阅读 · 0 评论 -
“最新趋势:R语言lavaan结构方程模型(SEM)的实践应用与技巧”
训练内容包括 R 语言入门、结构方程模型原理简介、lavaan 包简介及应用案例、潜变量分析、复合变量分析、非线性/非正态/缺失数据、分类变量、分组数据、 嵌套/分层/多水平数据、重复测量和时间数据、空间数据及非递归模型。可通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程。2) lavaan 简介、语法及结构方程模型分析入门。原创 2024-04-09 09:51:59 · 551 阅读 · 0 评论 -
基于R、Python的Copula变量相关性分析及AI大模型应用
在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。虽然皮尔逊相关、秩相关等相关系数提供了变量间相关关系的粗略结果,但这些系数都存在着无法克服的困难。大多数情况下变量间的相关性非常复杂,而且随着变量取值的变化而变化,而这些相关系数都是全局性的,因此无法提供变量间相关性变化的细节;Copula不但可以提供不同取值范围内变量间相关的结构和函数细节,而且可以应用于相关时间序列及回归分析的研究中,大大拓展了回归及时间序列分析的适用范围。原创 2024-04-02 16:48:02 · 1103 阅读 · 0 评论 -
ChatGPT在大气科学领域建模、数据分析、可视化与资源评估中的高效应用及论文写作
内容覆盖使用GPT处理数据、生成论文摘要、文献综述、技术方法分析等实战案例,能够将AI技术广泛应用于科研工作。特别关注将GPT与Python结合应用于遥感降水数据处理、ERA5大气再分析数据的统计分析、干旱监测及风能和太阳能资源评估等大气科学关键场景。2)时间序列的突变点检测(MK、Pettitt、BUT、SNHT、BG突变点检测)3)使用GPT生成趋势分析代码(Mann-Kendall)。4)使用GPT生成时间序列分析代码(如傅里叶变换或小波分析)1)使用统计方法(如线性回归)分析温度随时间的变化趋势。原创 2024-03-20 14:47:58 · 1057 阅读 · 0 评论 -
AI大语言模型GPT & R 生态环境领域数据统计分析
本次从GPT入门,到R语言基础与作图、回归模型分析、混合效应模型、多元统计分析及结构方程模型、Meta分析、随机森林模型及贝叶斯回归分析综合应用等一系列专题及实战案例。2.2 GPT辅助约束排序(RDA、db-RDA)分析:数据筛选、变量选择、结果解读及作图。2.1 GPT辅助非约束排序(PCA、PCoA、NMDS)分析:模型选择、结果解读及作图。3.2 GPT辅助二项分布(0,1)混合效应模型案例:数据检查、模型构建、结果展示。2.3 GPT辅助模型诊断: 模型可加性、残差正态性、方差异质性、奇异值等。原创 2024-03-13 10:11:18 · 1150 阅读 · 1 评论 -
【高分论文密码】大尺度空间模拟预测与数字制图技术
大尺度模拟技术可以从不同时空尺度阐明农业生态环境领域的内在机理和时空变化规律,又可以为复杂的机理过程模型大尺度模拟提供技术基础。在本次内容中,我们将结合一些经典的例子培训R语言在空间数据处理、管理以及可视化的操作,从空间数据计量、大尺度时间序列分析与突变检测、空间数据插值、空间数据建模、机器学习空间预测、多种机器学习集成技术、空间升、降尺度技术、空间模拟偏差订正技术、数据可视化、知识图谱等方面让您全方位掌握R语言大尺度空间数据分析模拟预测及可视化技术。四:《R语言地统计与空间自相关、空间插值方法》原创 2023-04-27 10:27:01 · 425 阅读 · 0 评论 -
【案例教程】R语言贝叶斯方法在生态环境领域中的高阶技术
然而,很多初学者在面对思想、技术和方法都与传统统计学有着较大区别的贝叶斯统计,以及其后验参数获取需要用到的马尔科夫、蒙特卡罗和吉布斯等现代抽样技术,特别是建模中复杂而令人眼花缭乱的脚本文件而畏葸不前。例1:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan&brms)贝叶斯回归模型结果图:散点图、预测图、箱线图、柱状图、提琴图、密度图及峰峦图等。长宽数据转换、空值(NA)等填充及删除、分组、排序及汇总等。数据生成:数据合并、数据拆分、新数据生成(字符操作)等。原创 2023-03-31 14:08:32 · 145 阅读 · 0 评论