2024最新R语言结构方程模型(SEM)在生态学领域中的实践应用

结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。然而,自Wright在1920年美国科学院院刊(PNAS)提出第一个结构方程模型(路径分析,Path Analysis)至今的100多年时间里,结构方程模型已发展出有较为庞大的理论体系和复杂多变的形式,使初学者往往无所适从。

本内容将利用开源软件R平台,以生态学领域研究问题为主线,如生物多样性、物种分布、生物入侵、生物地理格局、生物多样性与生态系统功能(BEF)、生态恢复、气候变化对物种分布影响等,通过理论讲解和实际操作相结合的方式,由浅入深地系统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程,能够利用结构方程模型方法解决实际研究和工作中遇到的相关科学问题。筛选大量应用结构方程模型的经典案例,这些案例来自Nature、Ecology、Ecological Applications、Ecology Letters、Journal of Ecology、Methods in Ecology and Evolution、Oikos、Ecography等主流期刊,多数案例为近期发表成果,具有很大的参考和借鉴价值。

本内容包括R语言入门、结构方程模型原理介绍、结构方程模型分析入门及高阶应用、潜变量分析、复合变量分析及贝叶斯结构方程模型参数估计。课程将利用lavaan,piecewiseSEM,blavaan及brms程序包分别从全局估计、局域估计及相应贝叶斯估计方法实现结构方程模型分析。

即适合R语言和结构方程模型的初学者,也适合对结构方程模型有高阶应用需求的研究生和科研人员。

【内容简介】:

专题一、R/Rstudio简介及入门 

(1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等

(2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

(3)R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)

(4)R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

专题二、结构方程模型(SEM)介绍

(1)SEM的定义、生态学领域应用及历史回顾

(2)SEM的基本结构

(3)SEM的估计方法

(4)SEM的路径规则

(5)SEM路径参数的含义

(6)SEM分析样本量及模型可识别规则

(7)SEM构建基本流程

专题三:R语言SEM分析入门:lavaan VS piecewiseSEM

1)结构方程模型在生态学研究中的应用介绍及模型要点回顾

2)结构方模型估计方法:局域估计和全局估计的基本工作原理、主要区别及应用情景分析

3)案例群落物种丰富度恢复的直接及间接效应(direct and indirect effects):SEM分析基本流程-lavaan vs piecwiseSEM

   (1)模型建立

   (2)模型拟合

   (3)模型评估

   (4)结果展示

1练习:根据元模型(meta-model)构建模型

2.练习:火烧干扰后植物群落恢复直接、间接及调节效应分析

专题四:SEM全局估计(lavaan)在生态学领域高阶应用

案例1:湿地生态系统初级生产力的直接和间接效应分析

  (1)问题提出、元模型构建

  (2)模型构建及模型估计

  (3)模型评估:路径增加和删减原则、最优模型筛选方法

  (4)结果表达

案例2:火烧干扰后植物群落恢复效果评估-数据缺失和正态性不足数据处理-

案例3:放牧对海拔与生物量关系的影响分析-数据分组分析

案例4:农业用地比例对河口水草多度影响-数据分层/嵌套分析

练习:环境异质性和资源可获得性对不同演替阶段林下维管植物多样性的影响

专题五:SEM潜变量分析在生态学领域应用

1)潜变量的定义、优势及应用背景分析

2)潜变量分析实现基本原理

3)案例1:海岸带米草群落生态恢复表现评估-单潜变量模型构建

4)案例2:城市景观中土地利用对有花植物资源和访花昆虫的直接与间接影响-多个潜变量模型构建

课后练习案例:植物多样性、能量梯度及环境梯度对动物多样性格局的影响-构建动物多样性潜变量

专题六:SEM复合变量分析在生态学领域应用

1)复合变量的定义及在生态学领域应用情景分析

2)复合变量分析实现途径

3)案例1:生态力与生物多样性形成机制分析-土壤理化因子的多复合变量构建

4)案例2:火烧后植被恢复对物种丰富度影响-复合变量解决非线性问题

5)案例3:气候暖化、海平面上升对湿地植物群落的复合影响-复合变量解决交互作用问题

课后实例讲解:植物群落物种多样性是否会提高其对入侵植物的抵抗力-多复合变量实现

专题七:局域估计SEM -piecewiseSEM及生态学领域高阶应用

1)piecewiseSEM对内生变量为二项及泊松分布数据的分析

2)混合效应模型+时间自相关问题:气候波动对海草床生态系统食物网结构影响

3)空间自相关问题:NDVI空间变化与气候和多样性关系 

4)系统发育相关问题:物种属性、社会性进化特征对海虾领域范围和多度影响- 

5)分组数据、交互作用、非线性关系问题分析(实例数据同专题4和6)

课后练习案例:人类活动、环境条件、物种属性对动物领域大小相对贡献-分组分析和分类变量处理

专题八:贝叶斯SEM在生态学领域应用

1)贝叶斯(bayes)方法简介

2)R语言贝叶斯SEM实现程序包blavaan和brms介绍

3)案例1:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan)

4)案例2:火烧后对植被恢复影响因素-模型拟合、模型比较和评估(brms)

### 结构方程模型SEM)的概念及其在数据分析中的应用 #### 什么是结构方程模型结构方程模型(Structural Equation Modeling, SEM)是一种综合性的统计建模技术,能够同时分析多个因变量和自变量之间的复杂关系[^1]。它结合了因子分析和路径分析的特点,允许研究人员验证理论模型并估计潜变量(latent variables)与观测变量(observed variables)之间的关系。 #### SEM 的主要组成部分 SEM 主要由两部分组成: 1. **测量模型**:描述潜变量与其对应的观测变量之间的关系。这部分类似于因子分析。 2. **结构模型**:表示潜变量之间以及它们与其他外生变量之间的因果关系。这可以通过路径图来直观展示。 #### 数据分析中的具体应用 SEM 广泛应用于社会科学、心理学、教育学、生态学领域,其核心优势在于能够处理复杂的因果关系网络,并支持对潜在概念的间接测量[^2]。以下是 SEM 在数据分析中的典型应用场景: 1. **探索变量间的因果关系** 路径分析作为 SEM 的基础形式之一,被广泛用来揭示变量间可能存在的因果机制。例如,在生态学研究中,SEM 可以帮助理解生物多样性与环境因素之间的相互作用。 2. **验证理论模型** 研究人员常使用 SEM 来测试预先设定的理论模型是否能很好地拟合实际数据。这种方法特别适合于那些涉及多层次或嵌套数据的情况,比如学生表现受学校和地区影响的例子[^3]。 3. **时间序列或重复测量数据的分析** 对于包含多次观察的时间依赖型数据集,交叉滞后模型(Cross-lagged Panel Model, CLPM)成为一种重要的工具。这种模型可以帮助区分两个变量随时间变化的关系方向性和稳定性[^4]。 #### 实现方法——基于 R 和 Python 的实践指南 ##### 使用 R 进行 SEM 分析 R 提供了一个强大的包 `lavaan`,专门用于执行 SEM 分析。下面是一个简单的例子演示如何定义和估算一个基本的 SEM 模型: ```r library(lavaan) # 定义模型 model <- ' # 测量模型 visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 # 结构模型 visual ~ textual + speed ' # 加载数据 data(HolzingerSwineford1939) # 执行 SEM 分析 fit <- sem(model, data=HolzingerSwineford1939) # 查看结果摘要 summary(fit, fit.measures=TRUE) ``` 上述代码展示了如何指定一个包含三个潜变量 (`visual`, `textual`, `speed`)SEM 模型,并通过 `sem()` 函数对其进行计算。 ##### 使用 Python 进行 SEM 分析 Python 社区也有针对 SEM 开发的相关库,如 `semopy` 或者其他第三方模块。这里给出一段示例代码说明如何操作: ```python from semopy import Model, Optimizer # 构造模型字符串 mod = ''' visual <-> textual # 协方差项 visual -> x1 # 显示变量到隐含变量的路径 textual -> x4 # ''' m = Model(mod) # 创建模型对象 m.load_dataset('dataset')# 导入数据文件 opt = Optimizer() # 初始化优化器 res = opt.optimize(m) # 计算最佳参数组合 print(res.summary()) # 输出最终报告 ``` 以上脚本实现了从加载外部 CSV 文件直至完成整个 SEM 建立过程的功能[^5]。 #### 样本量需求考虑 值得注意的是,在实施 SEM 之前应当充分考虑到所需最小样本数量的要求。虽然某些情况下即使是相对较少的样本也能得出可靠结论,但普遍建议至少拥有 100 到 150 名参与者才能获得较为稳健的效果评估;而对于更加复杂的多组设计,则推荐每组不少于一百个个体参与实验。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值