
论文推荐
“SFFAI133期来自伊利诺伊大学香槟分校博士三年级在读的杨卓林推荐的文章主要关注于基础研究的对抗机器学习领域,你可以认真阅读讲者推荐的论文,来与讲者及同行线上交流哦。”
关注文章公众号
回复"SFFAI133"获取本主题精选论文
01

推荐理由:从实验上验证了梯度正交性会和迁移性有很大关联,算是这一块研究的开端。
02

推荐理由:比较早的一篇从实验上尝试约束梯度正交性来提升多模型鲁棒性的文章,效果尚可但没有理论依据。
03
本文推荐伊利诺伊大学香槟分校博士杨卓林精选的6篇关于对抗机器学习的论文,探讨如何提升多模型鲁棒性,减少迁移性,包括梯度正交性与模型平滑度的影响。文中提供论文获取方式,适合关注机器学习安全领域的读者。

论文推荐
“SFFAI133期来自伊利诺伊大学香槟分校博士三年级在读的杨卓林推荐的文章主要关注于基础研究的对抗机器学习领域,你可以认真阅读讲者推荐的论文,来与讲者及同行线上交流哦。”
关注文章公众号
回复"SFFAI133"获取本主题精选论文
01

推荐理由:从实验上验证了梯度正交性会和迁移性有很大关联,算是这一块研究的开端。
02

推荐理由:比较早的一篇从实验上尝试约束梯度正交性来提升多模型鲁棒性的文章,效果尚可但没有理论依据。
03

被折叠的 条评论
为什么被折叠?