“问渠那得清如许,为有源头活水来”,通过前沿领域知识的学习,从其他研究领域得到启发,对研究问题的本质有更清晰的认识和理解,是自我提高的不竭源泉。为此,我们特别精选论文阅读笔记,开辟“源头活水”专栏,帮助你广泛而深入的阅读科研文献,敬请关注!
机器学习代码复用
1. The rewards of reusable machine learning code. Nat Mach Intell 6, 369 (2024).
https://doi.org/10.1038/s42256-024-00835-5(Editorial)
机器学习代码复用
涉及精心设计的机器学习工具的研究工作可以为研究社区乃至更广泛的领域带来持久的价值,只要这些方法、数据集和代码被清晰地描述并共享。近年来,我们观察到,在提交的论文中关于代码和数据的可用性标准有了明显的提高,这对开放科学和可复制性来说是个好消息。
代码应在同行评审过程中提供给审稿人,并在发表时公开发布。我们要求审稿人审查代码,如果可能的话,尝试运行它并复现论文中的发现。为了促进这一过程,作者可以选择通过Code Ocean平台以可执行计算胶囊的形式上传他们的代码。这使得审稿人可以在不需要安装各种库或软件包的情况下访问代码。
为了突出高质量代码开发的价值,我们在2020年引入了一种称为“可重用性报告”的文章格式,这些报告专门用于测试先前发表代码的健壮性、可扩展性和可重用性。到目前为止,已经发表了12篇可重用性报告,我们受到来自作者和审稿人的一致积极反馈,对此感到鼓舞。
开发高质量的代码和软件,这些代码和软件可以重新实现并扩展到新数据,甚至超出原始范围,可以催化进一步的研究并启发新的方向。
联邦学习、数据伦理问题
2. Bak, M., Madai, V.I., Celi, L.A. et al. Federated learning is not a cure-all for data ethics. Nat Mach Intell 6, 370–372 (2024).
https://doi.org/10.1038/s42256-024-00813-x(Comment)
联邦学习、数据伦理问题
联邦学习(FL)作为一种有前途的解决方案,已经获得了广泛的关注,它