pytorch中torch.gather()简单理解

1.作用

从输入张量中按照指定维度进行索引采集操作,返回值是一个新的张量,形状与 index 张量相同,根据指定的索引从输入张量中采集对应的元素。

2.问题

该函数的主要问题主要在dim维度上,dim=0 表示沿着第一个维度(行)进行索引采集,而 dim=1 表示沿着第二个维度(列)进行索引采集。
简单讲:dim=0,将在行上进行采集,行数不变,在列上取值,如下图中的例子torch.gather(input, dim=0, index=index),当dim=0时,[0,1]中0对应第一行第一列也就是1,1对应着第2行第2列(1在index的坐标为(1,2),dim=0,所以不用看index的行坐标的,只管纵坐标,也就是第2列。而此时值为1代表值input的行【需要+1,下标是从0开始的】,也就是第2行,值为4)也就是4;[1,0]中的1代表第2行第1列也就是3,0也就是第2列的第一行数据(此时index的0的坐标为(2,2),因为dim=0,也就不用看横坐标,也就是第二列。所以此时的0代表源input的行坐标,也就是第一行)也就是2

input = torch.tensor([[1, 2], [3, 4], [5, 6]])
index = torch.tensor([[0, 1], [1, 0]])

result = torch.gather(input, dim=0, index=index)
result_colum = torch.gather(input, dim=1, index=index)
print("result:",result)
print("result_colum:",result_colum)

结果如下:
在这里插入图片描述

### 回答1: 我可以提供一些建议,但无法保证它可以在没有改变原模型的情况下替换 torch.gather 操作。首先,可以尝试使用 torch.index_select 来实现同样的功能。其次,可以考虑使用 torch.masked_select 来替换 torch.gather,具体可以参考 PyTorch 的文档。 ### 回答2: 在PyTorch,如果想要在不改变原模型的情况下替换forward函数torch.gather操作,可以使用torch.index_select函数来实现相同的功能。torch.index_select函数接受一个tensor和一个维度索引作为参数,返回按照指定维度索引的元素。 首先,我们需要理解torch.gather操作的作用。torch.gather可以按照指定的维度,在一个tensor进行索引,并返回相应的值。例如,对于一个大小为(3, 4)的tensor,我们可以通过torch.gather(tensor, 0, index)来按照第0个维度的索引index来获取对应值。 下面是一个示例代码,展示如何使用torch.index_select替换forward函数torch.gather操作: ```python import torch import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.weights = nn.Parameter(torch.randn(3, 4)) def forward(self, index): # 使用torch.gather操作 output = torch.gather(self.weights, 0, index) return output def replace_forward(self, index): # 使用torch.index_select替换torch.gather操作 output = torch.index_select(self.weights, 0, index) return output ``` 在上面的示例代码,MyModel类的forward函数使用了torch.gather操作,而replace_forward函数则使用了torch.index_select来实现相同的功能。这样,我们可以在不改变原模型的情况下替换forward函数torch.gather操作。 ### 回答3: 在不改变原模型的情况下,我们可以通过使用其他的操作来替换`torch.gather`。 `torch.gather`操作通常用于根据索引从输入的张量提取特定元素。它的一般形式是`torch.gather(input, dim, index, out=None)`,其`input`是输入张量,`dim`是提取索引的维度,`index`是包含提取索引的张量。 为了替换`torch.gather`操作,我们可以使用`torch.index_select`和`torch.unsqueeze`来实现相似的功能。 首先,我们可以使用`torch.index_select`操作来选择指定维度上的索引。这个操作的一般形式是`torch.index_select(input, dim, index, out=None)`,其`input`是要选择的张量,`dim`是选择的维度,`index`是包含索引的一维张量。 然后,我们可以使用`torch.unsqueeze`操作来在选择的维度上增加一个维度。这个操作的一般形式是`torch.unsqueeze(input, dim, out=None)`,其`input`是要增加维度的张量,`dim`是要增加的维度。 综上所述,为了替换`torch.gather`操作,我们可以使用以下代码: ```python import torch class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, input, index): # 替换 torch.gather 的操作 output = torch.index_select(input, 1, index.unsqueeze(1)).squeeze(1) return output ``` 在上面的代码,我们使用`torch.index_select`选择了指定维度`dim=1`上的索引,并使用`torch.unsqueeze`增加了一个维度。最后,我们使用`squeeze`操作将这个额外的维度去除,以匹配`torch.gather`操作的输出。 这样,我们就在不改变原模型的情况下替换了`torch.gather`操作,实现了相似的功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值