一、LeetCode491. 递增子序列
1:题目描述(491. 递增子序列)
给你一个整数数组 nums
,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。
数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
2:解题思路
class Solution:
def findSubsequences(self, nums: List[int]) -> List[List[int]]:
res = []
path = []
def division(nums, startindex):
if len(path) >= 2:
# 当path的长度大于等于2时,就将path加入到res中
res.append(path[:])
# 此递归函数,不需要终止条件
# 当startindex=len(nums)时,下面的for循环不会执行,就直接返回了
# 深度遍历中每一层都会有一个全新的used
used = set() # 用来记录本层递归中,已经被使用的元素的值
for i in range(startindex, len(nums)):
if (path and nums[i] < path[-1]) or nums[i] in used:
# 当path不为空,并且当前元素的值小于此时path中最后一个值时,不符合递增的条件
# 或者当前元素的值已经被使用过
# 说明有前一个元素已经把当前元素的所有组合都已遍历过了
# 所以直接进入下一个元素的遍历
continue
path.append(nums[i])
# 元素加入path后,元素下标在used中对应的元素值,需要修改为1
used.add(nums[i])
division(nums, i+1)
# 回溯
path.pop()
# 因为used在每层递归中都有是一个全新的,跟path没有关系,所以path进行回溯时,跟used没关系
division(nums, 0)
return res
二、LeetCode46. 全排列
1:题目描述(46. 全排列)
给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
2:解题思路
自己的写法:
class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
res = []
path = []
n = len(nums)
def pathpermute(nums):
if len(path) == n:
# 当path的长度等于最开始的nums长度时,将path加入res中
res.append(path[:])
return
for i in range(len(nums)):
# 把元素加入path
path.append(nums[i])
# 用s来接收加入的这个元素,下一层递归的元素是除了当前元素,其他剩余的元素
# 所以要把当前加入path的元素从数组中移除
s = nums.pop(i)
pathpermute(nums)
# 回溯
path.pop()
# 需要将移除的元素,再加回到原来的位置
nums.insert(i,s)
pathpermute(nums)
return res
代码随想录的写法:
class Solution:
def __init__(self):
self.res = []
self.path = []
def permute(self, nums: List[int]) -> List[List[int]]:
used = [0] * len(nums) # 用来记录nums中元素是否被使用
self.backtracking(nums, used)
return self.res
def backtracking(self, nums, used):
if len(self.path) == len(nums):
# 当path的长度等于nums的长度时,加入res
self.res.append(self.path[:])
return
for i in range(len(nums)):
if used[i] == 1:
# 如果当前元素在used对应下标的元素等于1,表示这个元素已经被使用过了
continue
# 将当前元素在used中对应下标的元素值修改为1,表示这个元素被使用了
used[i] = 1
self.path.append(nums[i])
self.backtracking(nums, used)
# 回溯
used[i] = 0
self.path.pop()
三、LeetCode47. 全排列 II
1:题目描述(47. 全排列 II)
给定一个可包含重复数字的序列 nums
,按任意顺序 返回所有不重复的全排列。
2:解题思路
自己的写法:
class Solution:
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
res = []
path = []
n = len(nums)
def permute(nums):
if len(path) == n:
# 当path的长度等于原nums的长度时,将path加入到res中
res.append(path[:])
return
used = set() # 每一层递归都会生成一个新的used,用来记录本层已经遍历过的元素
for i in range(len(nums)):
if nums[i] in used:
# 当遍历的元素,已经在这一层的used中出现过,说明元素的组合已经被覆盖了
# 继续遍历下一个元素
continue
used.add(nums[i]) # 将当前元素加入到used,表示遍历过
path.append(nums[i])
s = nums.pop(i) # 下一层遍历的是除当前元素外的其他元素,因此从nums中移除
permute(nums)
path.pop() # 回溯
nums.insert(i, s) # 需要把移除的元素再加回来
permute(nums)
return res
代码随想录的写法:
class Solution:
def __init__(self):
self.res = []
self.path = []
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
used = [0] * len(nums) # 用来记录nums中对应下标的元素是否被使用过,0:未使用,1:使用过
nums = sorted(nums) # 先对nums进行排序
self.backtracking(nums, used)
return self.res
def backtracking(self, nums, used):
if len(self.path) == len(nums):
# 当path的长度等于nums的长度时,将path加入res
self.res.append(self.path[:])
return
# 因为时排列,所以i的每层递归都从0开始
for i in range(len(nums)):
if i > 0 and nums[i-1] == nums[i] and used[i-1] == 0:
# 如果当前元素的值等于前一个元素的值,并且前一个元素没有被使用过
# 说明前一个元素已经覆盖了当前元素的所有组合,就跳过这个元素
continue
if used[i] == 1:
# 如果当前元素的下标在used中对应的值为1,说明在本层递归中,这个元素已经被使用过
# 需要跳过这个元素,进入下一个元素的遍历
continue
used[i] = 1 # 元素被使用了,就将在used中对应的值修改为1
self.path.append(nums[i])
self.backtracking(nums, used)
self.path.pop() # 回溯
used[i] = 0