脑卒中 公开数据集(医学影像,脑部)(BraTS2018,CQ500,ISLE,MRBrainS)

本文介绍了多个用于脑部疾病研究的数据集,包括BraTS2018用于脑肿瘤分割,CQ500针对头部CT扫描识别出血、骨折和肿块,ISLES2018关注缺血性卒中病灶分割,MRBrainS专注于脑部多序列MRI图像分割。这些数据集提供了丰富的图像和临床信息,用于评估和改进医疗图像分析算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

脑卒中数据集: BraTS2018,CQ500,ISLE,MRBrainS, Hippocampus(MRI, 1759), Brain Hemarhage

1.BraTS2018

脑肿瘤图像分割挑战联合MICCAI会议
链接:https://grand-challenge.org/challenges/
会议为评估最好的脑肿瘤分割方法,数据集会随比赛的更新而更新(BraTS2018为目前最新数据集)。很多的数据集被公开,有5类label:脑部健康组织,坏死区,水肿区,肿瘤的加强和非加强区。所有的数据集被校准为同样的解剖模板,并且被插值为1 mm 3的分辨率。每个数据集包含增强前T1和增强后T1,T2,T2磁共振成像液体衰减反转恢复序列MRI体素。

brats 2018 training set有285个病例,每个病例有四个模态,需要分割三个部分:whole tumor, enhance tumor, and tumor core.

下面链接为BraTS2018数据集
百度网盘:
链接:https://pan.baidu.com/s/1A7xRvpNZgl-tgDnpCvU1Pg
提取码:1234

2.CQ500

头部CT扫描识别出血、骨折和肿块效应
CQ500数据集包含491个扫描和193317个切片
网页链接:http://headctstudy.qure.ai/
直接下载的链接:https://academictorrents.com/ 网页里直接搜索CQ500即可下载

3.ISLE

ISLES Challenge 2018缺血性卒中病灶分割
Isles 这个挑战被组织来评估,在精确MRI扫描图像中,中风病变及临床结果预测。提供了包含大量的精确中风样例和相关临床参数的MRI扫描。训练集和测试集通过SMIR平台公开
下载链接https://www.smir.ch/ISLES/Start2018

4.MRBrainS

这个评估架构的目的是比较脑部多序列(T1加权,T1加权反转恢复,磁共振成像液体衰减反转恢复序列,FLAIR)3T MRI图像,灰质,白质,脑脊髓液的分割算法。训练集包括5个手动分割的脑部MRI图像,测试集包括15份MRI图像。
下载链接:http://mrbrains13.isi.uu.nl

脑卒中数据集还包括Hippocampus(MRI, 1759), Brain Hemarhage等

### 可用的公共医学图像分割数据集 对于从事医学图像处理的研究人员来说,获取高质量的数据集至关重要。以下是几个常用的公开可用的医学图像分割数据集: #### 1. Medical Segmentation Decathlon (MSD) Medical Segmentation Decathlon 是一项旨在推动医学影像分析领域发展的挑战赛。该比赛提供了十个不同器官和病理条件下的三维标注数据集[^1]。 #### 2. LITS (Liver Tumor Segmentation Benchmark) LITS 数据集专注于肝脏肿瘤的自动检测与分割任务。此数据集中包含了来自多中心、多种扫描仪采集得到的CT 扫描图片及其对应的专家手动勾画掩码文件。 #### 3. BRATS (Brain Tumor Segmentation Challenge) BRATS 提供了脑胶质瘤患者的MRI 图像以及由神经科医生精心制作的标准真值标签。这些资料被广泛应用于评估新的算法性能并促进跨机构间的合作研究工作。 #### 4. ISIC Archive 虽然主要针对皮肤病变分类问题设计而成,但是ISIC 归档库同样收录了一定量经过精细标记后的黑色素痣及其他皮肤病灶区域边界信息,可用于训练和测试各种类型的语义级目标识别模型。 ```python import os from glob import glob def list_datasets(): base_path = "path_to_medical_dataset_directory" dataset_names = [ 'msd', 'lits', 'brats', 'isic' ] paths = {name:glob(os.path.join(base_path, name, '*')) for name in dataset_names} return paths print(list_datasets()) ```
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值