矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现

矩池云上复现论文 Neural Graph Collaborative Filtering 环境复现

Neural Graph Collaborative Filtering (NGCF) is a new recommendation framework based on graph neural network, explicitly encoding the collaborative signal in the form of high-order connectivities in user-item bipartite graph by performing embedding propagation.

https://github.com/xiangwang1223/neural_graph_collaborative_filtering
bash /public/script/switch_conda_source.sh

在这里插入图片描述

git clone https://github.com/xiangwang1223/neural_graph_collaborative_filtering.git
bash /public/script/switch_conda_source.sh
conda create -n py36 python=3.6.5

在这里插入图片描述

在这里插入图片描述

# To activate this environment, use
#
#     $ conda activate py36
#
# To deactivate an active environment, use
#
#     $ conda deactivate
conda activate py36

在这里插入图片描述
在这里插入图片描述

pip install tensorflow-gpu==1.8.0
pip install scipy==1.1.0
pip install scikit-learn==0.19.1
pip install numpy==1.14.3

在这里插入图片描述

cd /neural_graph_collaborative_filtering/NGCF/
python NGCF.py

在这里插入图片描述

Gowalla dataset

python NGCF.py --dataset gowalla --regs [1e-5] --embed_size 64 --layer_size [64,64,64] --lr 0.0001 --save_flag 1 --pretrain 0 --batch_size 1024 --epoch 400 --verbose 1 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1]

Amazon-book dataset

python NGCF.py --dataset amazon-book --regs [1e-5] --embed_size 64 --layer_size [64,64,64] --lr 0.0005 --save_flag 1 --pretrain 0 --batch_size 1024 --epoch 200 --verbose 50 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值