- 博客(30)
- 收藏
- 关注
原创 解决:conda安装recbole产生的CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://mirrors.tuna.tsinghu
这里会多等一会儿,因为很多包都需要更新。(提一句,在此之前,我在使用conda命令的时候,遇见过很多次让我更新conda的情况,还给我一个语句让执行,但我执行了没有用,不知道是什么问题)1、在cmd里ping一下来源路径,未发现网络丢包问题( 丢失率为0),说明网络稳定,这种情况下一般不会是网络问题;3、更新完conda之后,再次启动新建的虚拟环境recbole;在Anaconda prompt中,输入:【我用的环境是python3.9】首先,新建一个虚拟环境recbole。
2024-06-18 11:06:31 264
原创 DCRec:Debiased Contrastive Learning for Sequential Recommendation
目前的顺序推荐系统被提出来解决动态用户偏好学习的各种神经技术,如Transformer和图神经网络(GNNs)。然而,从高度稀疏的用户行为数据的推断可能阻碍顺序模式编码的表示能力。为了解决标签短缺问题,最近提出了对比学习(CL)方法以两种方式执行数据增强:(i)随机破坏序列数据(例如,随机掩蔽、重新排序);(ii)跨预定义的对比视图对齐表示。在解决流行的偏见和用户的一致性和真实的兴趣时,CL为基础的方法有局限性。本文模型:统一的顺序模式编码与全局协作关系建模,通过自适应一致性感知增强。
2024-06-11 20:37:52 1061
原创 DKTCDR:Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation
针对跨领域知识图谱,提出了一种跨领域知识转移策略(CKTS),使有价值的知识从源领域高效转移到目标领域,从而提高跨领域知识转移的有效性。在跨域知识图中,与域间关系相比,大多数节点拥有大量的域内关系,直接聚合一个节点的所有邻居可能会损害跨域知识的转移效率,于是,必须制定一个有效的策略进行知识转移。最后,因为2018版本的亚马逊数据并不包括2014的全部,所以合并了2014和2018版本的数据,评论包括评论者ID,ASIN,评论内容、评级和时间戳。在CDR中,构建连接两个域的桥梁是实现跨域推荐的基础。
2024-05-31 16:43:42 773
原创 CoFactor:Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item
我们使用每个用户消费或评分的项目集以及数据中用户之间这些项目的共同出现次数来学习项目嵌入。
2024-05-29 20:33:18 558
原创 LFCDR:Latent mutual feature extraction for cross-domain recommendation
域D中的用户U和项目I的简档拥有各自的属性,将类别C定义为反应用户和项目简档属性之间共享的域特征的简档属性。关于类别的定义:类别C考虑用户的简档属性或项的简档属性,其准确地反应域D的特征。类别定义是领域特定的,并且由基于用户的属性αU或基于项目的属性αI来表征。【使用上标的S,T来区分源域和目标域的问题】1、给定任意的源域和目标域,跨域推荐问题就是通过源域到目标域的迁移学习来改进目标域的推荐结果。注意源域和目标域是异构的。
2024-05-28 16:36:13 1657
原创 GA-DTCDR:A Graphical and Attentional Framework for Dual-Target Cross-Domain Recommendation
提出一个图形和注意力的框架GA-DTCDR:首先,构建两个独立的异构图,并从两个领域的评级和内容信息上生成更具代表性的用户和项目嵌入;然后,提出一个元素级的注意力机制,有效的联合嵌入两个域的共同用户。这一层可以智能的为从两个域种学习到的共同用户的两个嵌入提供一组权重,并为共同用户生成组合嵌入,保留不同比例的两个域中学到的特征。给出两个相关域A,B的显示反馈(评级和评论),隐式反馈(购买和浏览历史),边信息(用户配置文件和项细节),双域推荐的目的是同时提高这两个域的推荐准确率。
2024-05-23 17:09:52 2030
原创 CD-ELR:A Novel Cross-Domain Recommendation with Evolution Learning
与传统的LSTM不同,F-LSTM中的记忆单元,也称为长期记忆,包含了用户偏好和反映长期演化的项目特征的历史交互。我们将记忆单元分解为短期和长期兴趣,然后通过具有间隔感知的权重效用函数的变化的影响来衰减长期兴趣,该函数将演化退步为一个合适的权重。假设一个域k的评级矩阵R包含域k中的全部评级记录,一个反馈矩阵M是包含所有评级值r的矩阵,是在时间戳s上的域k的反馈矩阵,其中的s范围是从1到τ,在域k中,对于用户ui的查询,模型在最后预测的交互矩阵中的第i行列出TOP-N的预测值,来针对用户ui进行项推荐。
2024-05-21 16:33:02 891
原创 OUAG:Cross-domain recommendation of overlapping users based on self-attention gcn
在传输过程中不考虑域之间的项目之间的相似关系和用户对域之间的项目的偏好之间的关系。但M忽略了节点本身对实际推荐效果的影响,所以在M的基础上增加一个同维度的单位矩阵I,可以减轻自身节点对结果的影响,即Z=M+I。为每个重叠的用户和双域中的项目,通过假设输入ID和嵌入之间的映射关系,将无向图中所有的节点都映射到一个低维向量。在预测层中,上述的输出结果被送到两个多层的前向网络中,以获得双域中重叠用户和项目的预测结果。上述的模型的代价函数采用常用的交叉熵函数:结合两个域的交叉熵函数,平衡推荐结果,函数为。
2024-05-16 19:43:29 520
原创 NMACDR:基于邻居交互增强和多头注意力机制的跨域推荐模型
用带上标的U,V代表源域s和目标域t的用户和项目,另有O代表s和t重叠的用户,但s和t的项目不重叠。冷启动指的是在s中但不在t中的用户的推荐(表示为U加上标c)。将s的评分矩阵R分解为{U,V};t的R同样被分解。对于每一个u都有一个交互列表S和一个k个的邻居列表N。本模型的目标是根据观察到的两个领域的交互数据,为冷启动用户推荐t中的项目。
2024-05-14 16:05:59 818
原创 半监督的GCN:Semi-Supervised Classification With Graph Convolutional Networks
关于内存需求:当前模型采用全批量梯度下降,后续考虑小批量随机梯度下降,但此时要考虑GCN的层数,因为具有k层的gcn的k阶邻域必须存储在存储器中以用于精确的过程。关于图是有向边还是无向边:框架只支持无向边,如果是有向图可以拆分为无向二分图,并添加表示原图中的边的节点,可以处理有向边和边特征。对于大型图,其损失函数的特征分解的计算十分昂贵,为解决此问题,可以用切比雪夫多项式到第k阶的截断展开来近似代替gθ(Λ)。这种方法是在图的边的数量上进行线性的缩放模型,并学习包含局部图结构和图节点的几个隐藏层表示。
2024-05-13 17:14:48 597
原创 用于图像分类的CNN:ImageNet Classification with Deep Convolutional Neural Networks
ImageNet是一个包含超过1500万个标记的高分辨率图像的数据集,属于大约22,000个类别。ILSVRC竞赛使用ImageNet的一个子集,在1000个类别中的每个类别中大约有1000张图像。总共有大约120万张训练图像,5万张验证图像和15万张测试图像。ILSVRC-2010是ILSVRC的唯一版本,测试集标签可用,因此这是我们执行大部分实验的版本。由于我们也在ILSVRC-2012竞赛中输入了我们的模型,因此也报告了这个版本的数据集的结果,其中测试集标签不可用。
2024-05-08 17:26:28 751 1
原创 Caffe: Convolutional Architecture for Fast Feature Embedding
相同的模型可以在各种硬件上以CPU或GPU模式运行:Caffe将表示与实际实现分离,异构平台之间的无缝切换进一步促进了开发和部署Caffe甚至可以在云中运行。虽然Caffe最初是为视觉而设计的,但它已被语音识别,机器人,神经科学和天文学用户采用和改进。
2024-05-07 16:05:55 718
原创 PM:CROSS-DOMAIN RECOMMENDATION METHOD BASED ON MULTI-LAYER GRAPH ANALYSIS WITH VISUAL INFORMATION
一、基于域内关系的表示在源域和目标域的图形构造时,使用用户-项目的交互特征和视觉特征。如图是一个域的图构造:图构造的目的是使用用户-项目的交互和视觉特征来计算用户和项目的嵌入特征。其中p是用户的数量,最大到P;q是项目的数量,最大到Q。定义用户和项目的嵌入特征为:,这里的d是嵌入特征的维度。
2024-05-06 19:11:46 745
原创 GBCD:图卷积宽度跨域推荐系统
一、实验:1、数据集:Amazon和MovieLens2、对比方法:TGT,CMF,L-GCN,EMCDR,PTUP,DisenCDR3、结果:结合源域数据被证明是缓解数据稀疏性和提高目标域推荐性能的有效方法;联合高阶信息确实对推荐性能有提升;GBCD还考虑了所有情况下模型训练的时间;进行消融实验,证明GCN比图注意网络效果好,BLS比MLP效果好,即证明了BLS随机映射功能增强了模型的鲁棒性,有助于提高模型的预测能力,利用GCN聚合邻域特征有利于提高模型的预测性能。
2024-04-29 16:36:12 745
原创 宽度学习系统研究进展
深度神经网络的前向传播:反向传播:基于此种方法,提出随机向量函数连接神经网络RVFLNN。首先将原始数据X经过非线性变换得到隐藏层【其中神经元即增强节点】,将扩展矩阵A=【X|】经权重W与输出层相连得到最终输出,其中W通过伪逆运算获得。经此模型,提出BLS模型。如图,隐藏层包括特征节点和增强节点两部分。BLS有三种增量学习算法,分别是增强节点增量算法、特征节点增强算法、输入数据增量算法。综上所述,将宽度学习引入推荐系统中是一项具有挑战性的任务。
2024-04-28 16:19:30 652 1
原创 BiGBPR:Bi-Group Bayesian Personalized Ranking from Implicit Feedback
一、实验:1.数据集:3.评价指标:Precision@5、Recall@5、F1@5、NDCG@5和MAP@5,显然top-k,k=54.结果:成对学习在隐式反馈项目推荐中很重要;群体偏好在个性化排名中的作用很大;Bi-Group引入了更丰富的表示,并在项目推荐任务中取得了更好的效果。二、结论:能不能把双群加入到其他非概率类型的模型中?
2024-04-24 16:59:41 396
原创 GBPR: Group Preference Based Bayesian Personalized Ranking for One-Class Collaborative Filtering
1.数据集:MovieLens100K,MovieLens1M,UserTag ,Netflix的一部分。对于所有数据集,我们随机抽取一半的用户-项目对作为训练数据,其余的作为测试数据,然后从训练数据中为每个用户随机抽取一个用户-项目对来构建验证集。重复三次,所以每个数据集我们有3个副本来做实验,实验结果也在所有数据副本的基础上做了平均。2.评估指标:使用top-k来研究推荐性能,选择的指标有precision,recall,F1,NDCG和1-call,AUC。预设k=5BPR。
2024-04-23 16:48:13 581
原创 NCF框架:Neural Collaborative Filtering
1.数据集:MovieLens和Pinterest2.评价指标:选取留一评价法。排名列表的性能使用命中率HR和归一化折现累积增益NDCG判断。TOP103.基线:ItemPop,ItemKNN,BPR,eALS4.结果:对于排名列表,NeuMF展现了比上述所有算法都优秀的表现;对于推荐结果,NeuMF也有略有优势;对于预训练部分,做了有和没有预训练的实验结果,有预训练的实验结果在大部分情况下效果优于不做预训练的情况;对于损失函数,NeuMF的损失最小,HR等也比较优于其他模型;
2024-04-23 10:17:28 688
原创 B-FM:Bayesian Factorization Machines
在Netdlix挑战数据集上对BFM进行评估,这个数据集在推荐系统范围内是常见的,包括17700部电影的480189个用户的n=100480507个评分。定参α0=β0=γ0=αλ=βλ=1,µ0=0,这是因为解释变量的数量很多,所以它们这几个变量对Gibbs采样器的影响可以忽略不计。通过BFM的推导,可以通过输入数据x的适当规范来学习不同的贝叶斯模型:1二进制指标++,2实值变量KNN。BFM KNN和BFM KNN++与SGD KNN等价。
2024-04-19 16:26:31 831
原创 ReCDR:Expanding Relationship for Cross Domain Recommendation
1.异构网络:G=(V,E),每个异构图还与一个节点类型映射函数μ1:V->A和边类型映射函数μ2:E->R相关,A和R是一组预定义的节点类型和边类型,具有约束条件:2.DTCDR:同时考虑两个域DA和DB的属性信息,包括显示反馈、隐式反馈和边信息,双目标跨域推荐的目标是同时提高两个域的推荐性能。3.三元组:其含义是用户u更喜欢项目I。选用数据集Amazon review dataset采用基于排名的评估方法,并遵循留一策略来分割训练集,验证集和测试集。
2024-04-18 16:35:08 833 1
原创 DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
预训练会增加成本,即降低模型效率;因为使用了one-hot编码所以选择sigmoid函数作为最后的结合函数;超参数包括但不限于:激活函数、丢弃率、网络形状、每层神经元数量、隐藏层数量;DeepFM的效率与最先进的深度模型相当,在AUC和Logloss方面优于最先进的模型。
2024-04-15 16:41:28 854 1
原创 CMF:Relational Learning via Collective Matrix Factorization
关系数据=实体+关系关系数据库中的实体类型和关系类型的数量是固定的,在这样的领域中的重点是链接预测和关系值预测我们用广义线性链接函数分解每个关系矩阵,但是当一个实体类型涉及到多个关系时,我们将不同模型的因子联系在一起,即CMF在CMF中,混合来自多个关系的信息会得到更好的预测,这补充了关系共聚类中的相同观察结果。在一个可分解的,二阶可微的损失的假设下,推导出一个完整的牛顿步骤交替投影框架。
2024-04-11 17:27:01 527 1
原创 IPS:Debiasing Learning based Cross-domain Recommendation
D,U,I代表一组域,用户,项目;其中单项表示为d,u,i。设置存在部分用户重叠,不假定项目重叠。相反,来自不同域的项目共享相同的属性集J(m个)。给定一个用户偏好,假设存在两种偏好表示(k维),即不同领域共享的一般偏好和受领域相关因素影响的领域特定偏好。给定u和每个i的属性集Ji我们的目标是学习用户的一般偏好,从受领域偏好影响的偏好中去除偏见,并更好的预测用户的行为yui。去偏后的聚类结果可以转移到其他领域,以帮助特定领域的推荐。本文目前只处理了选择偏差,没有处理曝光偏差、位置偏差等。
2024-04-09 20:51:03 704
原创 CTL:Cross-domain Collaboration Recommendation
CTL也可以推广到多个领域。其基本思想是用多项式分布代替伯努利分布。该多项式表示多个领域之间、两个特定领域之间或单个领域中的协作主题。基于学习到的主题,可以构建一个以主题为中心的网络,然后执行RWR,以估计来自不同领域用户的相关性得分。对跨域协同推荐问题进行了惊群定义,并提出三种模型的排名等,最终提出一种跨域的主题建模方法来学习和区分协作主题,并证明了该方法的有效性和效率。【跨域问题涉及到社会问题,知识传播,强关系相关、弱关系相关等】
2024-04-08 17:24:43 803
原创 NAC:Neural Attentive Cross-Domain Recommendation
NAC的核心思想是考虑多个源域对用户在目标域中选择的跨域潜在影响,将用户偏好知识跨域传递。实验表明,NAC优于基线模型【BPR NeuMF CLFM SCoNet NAC*】,证明了本神经架构和跨域行为注意机制的重要性。
2024-04-07 17:34:40 685
原创 LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
LightGCN更容易训练,有更好的泛化能力,更有效。
2024-04-05 15:05:35 341 1
原创 NGCF:Neural Graph Collaborative Filtering
近邻信息对嵌入学习有一定帮助;建模高阶连通性或邻居有积极的影响;利用高阶连通性可以大大提高非活跃用户的表示学习,因为可以更有效的捕捉协作信号,于是在解决数据稀疏方面是有希望的。下一步可以加入注意力机制。
2024-04-05 14:59:32 2009
原创 PPCDR:Privacy-Preserving Cross-Domain Recommendation with Federated Graph Learning
PPCDR优于一些有竞争力的单域和跨域基线,同时保护隐私。虽然它已经有效解决了隐私保护的跨域推荐问题,但仍然有可发展方向,比如考虑更复杂的跨域推荐场景,或利用更多类型的信息,比如文本、图像、视频,来提高隐私保护的跨域推荐的性能。
2024-04-03 19:38:08 893
原创 POI Recommendation with Federated Learning and Privacy Preserving in Cross Domain Recommendation
商圈、LDA模型,用于为文档生成主题分布,是一个词袋模型。同态加密(用来保护用户隐私,并且支持加密数据的运算而无需解密)。
2024-04-03 19:23:25 198
原创 NATR:Cross-domain Recommendation Without Sharing User-relevant Data
(仅为总结所读文献,以供本人日后查阅)
2024-01-10 19:59:45 945 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人