经典信息论基础

编码树

给定一个字符集 Σ \Sigma Σ,用 σ : Σ → { 0 , 1 } + \sigma: \Sigma \rightarrow \{0,1\}^+ σ:Σ{0,1}+ 对该字符集编码。对 ∀ s 1 , s 2 ∈ Σ \forall s_1, s_2 \in \Sigma s1,s2Σ s 1 ≠ s 2 s_1 \neq s_2 s1=s2,有 σ ( s 1 ) \sigma(s_1) σ(s1) 不能是 σ ( s 2 ) \sigma(s_2) σ(s2) 的前缀。
我们定义 { σ ( s ) ∣ s ∈ Σ } \{\sigma(s) | s \in \Sigma \} {σ(s)sΣ} Σ \Sigma Σ 的前缀自由编码(prefix free encoding)。 Σ \Sigma Σ 的前缀自由编码构成了一颗编码树。

Σ \Sigma Σ 中的元素出现频率不同。为更好地压缩,我们可以让出现频率更高的字母编码程度更短。假设 s i s_i si 出现概率为 p i p_i pi,编码长度为 l i l_i li。则确定一个字母的期望 0,1-字符串长度是
∑ p i l i \sum p_i l_i pili
其中 ∑ p i = 1 \sum p_i = 1 pi=1
∣ Σ ∣ = n |\Sigma| = n Σ=n。易证,编码树存在当且仅当
∑ i = 1 n 2 − l i ≤ 1 \sum_{i=1}^n 2^{-l_i} \le 1 i=1n2li1
由此易证
∑ i = 1 n p i l i ≤ − ∑ i = 1 n p i log ⁡ 2 p i \sum_{i=1}^n p_i l_i \le -\sum_{i=1}^n p_i \log_2 p_i i=1npilii=1npilog2pi
等号成立当且仅当 l i = − log ⁡ 2 p i l_i = -\log_2p_i li=log2pi

香浓熵

对于一个随机变量的概率分布 p p p(一个函数),定义香浓熵 H ( p ) H(p) H(p) 为嵌在 p p p 中的不确定度。选定该随机变量的具体值,我们获得的信息就是 H ( p ) H(p) H(p)
p = ( p 1 , . . . , p n ) p=(p_1,...,p_n) p=(p1,...,pn),则
H ( p ) = − ∑ i = 1 n p i log ⁡ 2 p i H(p) = -\sum_{i=1}^np_i \log_2p_i H(p)=i=1npilog2pi
香浓熵表示了数据压缩的下限。

联合熵

与香浓熵类似,随机变量 X , Y X,Y X,Y 的联合熵定义为
H ( X , Y ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) log ⁡ p ( x , y ) H(X,Y) = -\sum_{x\in X} \sum_{y \in Y} p(x,y) \log p(x,y) H(X,Y)=xXyYp(x,y)logp(x,y)

条件熵与互信息

我们定义条件熵 H ( Y ∣ X ) H(Y|X) H(YX) 为拥有了 X X X 的信息后,随机变量 Y Y Y 的熵。在获得 X X X 信息这个过程中减少的不确定性称为信息。如果 ( X , Y ) ∼ p ( x , y ) (X,Y) \sim p(x,y) (X,Y)p(x,y),则定义条件熵

H ( Y ∣ X ) = ∑ x ∈ X p ( x ) H ( Y ∣ X = x ) = − ∑ x ∈ X p ( x ) ∑ y ∈ Y p ( y ∣ x ) log ⁡ p ( y ∣ x ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) log ⁡ p ( y ∣ x ) \begin{aligned} H(Y|X) & = \sum_{x\in X} p(x)H(Y|X=x) \\ & = -\sum_{x\in X} p(x) \sum_{y \in Y} p(y|x) \log p(y|x) \\ & = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(y|x) \end{aligned} H(YX)=xXp(x)H(YX=x)=xXp(x)yYp(yx)logp(yx)=xXyYp(x,y)logp(yx)

相对熵

设随机变量 X X X Y Y Y 的联合概率分布为 p ( x , y ) p(x,y) p(x,y),则 X X X Y Y Y 的互信息定义为
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = ∑ x , y p ( x , y ) log ⁡ p ( x , y ) p ( x ) p ( y ) = D ( p ( x , y ) ∣ ∣ p ( x ) p ( y ) ) \begin{aligned} I(X;Y) &= H(X) - H(X|Y) \\ & = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \\ &= D(p(x,y)||p(x)p(y)) \end{aligned} I(X;Y)=H(X)H(XY)=x,yp(x,y)logp(x)p(y)p(x,y)=D(p(x,y)p(x)p(y))
发送者将信息 W W W 编码为 X X X,并通过信道 p ( y ∣ x ) p(y|x) p(yx) 发送 X X X。接受者收到 Y Y Y。如果 I ( X ; Y ) I(X;Y) I(X;Y) 比较大,则接受者可以从 Y Y Y 中解码出 W W W

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值