深度学习入门:基于Python的理论与实现——第一章Python入门

本文为深度学习入门:基于Python的理论与实现的学习笔记,由于笔者已有matalb、c\c++,java相关语言基础,故只记录不同之处需要注意的地方,供给有其他有语言基础,没学过python但研究方向为机器学习等分支方向的同学参考。

第一章Python入门

1.2.2使用的外部库

  • Numpy是用于数值计算的库,提供了很多高级的数学算法和便利的数学(矩阵)操作方法。
  • Matplotlib是用来画图的库。使用Matplotlib能将实验结果可视化,并在视觉上确认深度学习运行期间的数据。

1.3.4列表

        Python索引左闭右开

   eg a[0:2] #索引0~2的元素(不包括2)的元素

       索引0对应第一个元素

       索引-1对应最后一个元素

1.3.5字典

字典以键值对形式存储数据 {‘height’:180}

  • Python使用空白字符表示缩进。每缩进一次,使用四个空白字符

1.3.8 for语句

  循环处理时可以使用for语句

  语句结构 for i in [1,2,3]:

1.3.9 函数

将一连串处理定义为函数

>>>def hello():

print(“Hello world!”)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值