本文为深度学习入门:基于Python的理论与实现的学习笔记,由于笔者已有matalb、c\c++,java相关语言基础,故只记录不同之处需要注意的地方,供给有其他有语言基础,没学过python但研究方向为机器学习等分支方向的同学参考。
第一章Python入门
1.2.2使用的外部库
- Numpy是用于数值计算的库,提供了很多高级的数学算法和便利的数学(矩阵)操作方法。
- Matplotlib是用来画图的库。使用Matplotlib能将实验结果可视化,并在视觉上确认深度学习运行期间的数据。
1.3.4列表
Python索引左闭右开
eg a[0:2] #索引0~2的元素(不包括2)的元素
索引0对应第一个元素
索引-1对应最后一个元素
1.3.5字典
字典以键值对形式存储数据 {‘height’:180}
- Python使用空白字符表示缩进。每缩进一次,使用四个空白字符
1.3.8 for语句
循环处理时可以使用for语句
语句结构 for i in [1,2,3]:
1.3.9 函数
将一连串处理定义为函数
>>>def hello():
print(“Hello world!”)