代码Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring.
文献基本信息
本文详细算法部分读的不是很清楚,欢迎各位大佬批评指正
文献类型:会议
作者:Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet
来源: In Proceedings ofthe 2018 USENIXSecurity Symposium USENIXSecurity)
引用:Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
2018. Turning Your Weakness Into a Strength: Watermarking Deep Neural
Networks by Backdooring. In Proceedings ofthe 2018 USENIXSecurity Symposium
(USENIXSecurity). USENIX.
发表会议:USENIX
开源代码:https://github.com/adiyoss/WatermarkNN
发表时间:2018
文献综览:
本文提出了一种以黑盒方式对深度神经网络进行水印的方法。本文的方案适用于一般的分类任务,并且可以很容易地与现有的学习算法相结合。实验表明,这样的水印对模型设计的主要任务没有明显的影响,并评估了本文的方案对大量实际攻击的稳健性。此外,本文还提供了理论分析,将本文的方法与以前关于回溯的工作联系起来。本文提出了一种在深度神经网络中以黑盒方式嵌入水印的方法。该方法适用于一般的分类任务,并且可以轻松地与当前的学习算法相结合。通过在训练过程中引入一种特定的“后门”或“触发器”,研究人员能够在不影响模型主要任务性能的同时,实现对模型的知识产权保护。当输入的数据中包含特定的触发器时,模型将表现出一种预定的异常行为,这种行为可以用于确认模型的归属。
本文讨论了在神经网络中引入后门(backdoors)的机制,特别是强后门(strong backdoors)的构造和验证。首先,通过一种承诺机制(commitments),生成后门密钥(mk)和验证密钥(vk),其中涉及随机字符串的采样和对应的承诺生成。接着,提出了一个算法流程,包括运行特定函数、计算与验证过程,以及后门密钥的更新和验证。
文中还详细探讨了从私有验证到公开验证的过渡,以及实现这一过程的细节。构建了一个公开验证算法,该算法基于哈希函数和零知识证明,确保了后门密钥的合法性和验证过程的公正性。此外,还探讨了后门所有权的问题,即确保只有原始所有者能够控制和使用后门,同时防止后门被非法复制或滥用。