目录
前言:目标检测的范式转变
在计算机视觉的发展历程中,目标检测一直是最具挑战性和实用价值的任务之一。从早期的Viola-Jones人脸检测器,到深度学习时代的R-CNN系列,再到YOLO、SSD等一阶段检测器的兴起,每一次技术革新都推动着整个行业的发展。然而,传统的目标检测模型都面临着一个根本性的限制:它们只能检测在训练时见过的固定类别对象。
想象一下这样的场景:一个在ImageNet上训练的检测模型能够完美识别猫和狗,但当你让它检测"穿红色衣服的人"或"破损的路面"时,它就束手无策了。这种局限性在实际应用中造成了巨大的障碍。每当需要检测新的对象类别时,就必须收集大量标注数据,重新训练模型,这个过程既耗时又昂贵。
正是在这