基于神经网络的绝对值方程求解法(自用)

摘要:

       本文提出一种求解绝对值方程AVE的神经网络方法

       当AVE唯一可解时,AVE被转化为等效的线性线性互补问题(LCP)   提出了求解LCP的神经网络动态模型。

         通过Lyapunov稳定性理论,证明所提出的神经网络模型在Lyapunov意义上是稳定的,并且收敛到唯一的平衡点。

         在高维上,神经网络具有良好的性能。此外,所提出的神经网络模型的结构简单,使得电路实现容易,仿真结果表明所提出的网络是可行且高效的。

引言

       Ax-\left | x \right | = b

       AVE如果唯一可解,可以等效地重新表示为LCP,此外,LCP在一定条件下可以表示为具有形式的AVE。可以用这个等效公式来使用LCP的方法求解AVE。

      本文的解决方法:基于电路实现的人工神经网络。神经网络方法的主要优点是:动态求解过程本质是并行和分布式的。  因此,神经网络方法可以在运行时间内以数量级求解方程。

      本文提出一种求解AVE的神经网络模型,首先,在A的奇异值超过一的条件下,将AVE转化为等效的LCP。然后,通过神经网络模型求解LCP。并且提出的方法可靠简单且与量纲无关。也就是说解决此问题所需要的计算时间不会随着AVE维数的增加而增加,并且所提出的模型结构比其更加简单。此外,该神经网络被证明在Lyapunov意义上是全局稳定的,并且收敛于AVE的唯一解。

     引理:如果A的奇异值超过1,则AVE对于任何b属于R, n是唯一可解的。

 *本篇文章只考虑AVE唯一可解的情况。

接下来,我们将介绍AVE实际上等价于广义的LCP

  AVE等价与广义LCP

由引理两个可知,如果AVE唯一可解,则它与LCP有相同的解,此问题等价为求解LCP()

        该神经网络有n个状态变量,3n个求和器和n个神经元,结构简单,使得电路实现更容易。

为了了解所提出的神经网络问题更好的解决问题,我们将其与提出的现有梯度神经网络进行比较,其中梯度神经网络模型的优点是:直接可以利用能量函数的导数得到神经网络,但是缺点是:梯度神经网络只能得到近似解。

动态神经网络模型的平衡点就是LCP的解。

如果A的奇异值超过1,则LCP中的矩阵M是正定的。

如果矩阵M是正定的,则神经网络在李雅普诺夫意义上是稳定的,并且全局收敛于的唯一解。此外,神经网络的收敛速度是随着\lambda的增加而增加。

在本章节中,我们通过一个数值示例来展示所提出的神经网络求解AVE的可行性。

结论:可以看到神经网络是稳定并且有效地解决问题,而且随着尺度参数\lambda的增加,求解所消耗的时间减小。从而在实际应用中,通过改变\lambda的值,可以调节求解式的时间,并且,所提出的神经网络解决方案所需要的计算时间不会随着AVE维数增加而增加。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值