2021年12月11日,由第四范式开发者社区主办的国内首次“Feature Store
Meetup”,邀请到了来自美团、小米、伴鱼、第四范式的国内机器学习工程领域前沿专家,共同带来关于MLOps、及Feature
Store的相关分享。
活动背景
随着机器学习在越来越多的企业部署到更多的场景中,对于数据/Feature(即特征)的管理也越来越有挑战性。如何保证线上/线下的一致性,如何共享多个feature以减少重复性工作,如何满足低延迟线上预测实现等问题一直是机器学习落地过程中的难点。Feature Store的出现实现了有效的功能工程与管理,同时使得整个公司范围内的功能标准化以及离线和在线模型之间的功能一致性。自2017年Ubar首次提出Feature Store的概念发展至今,国内、外已有不少公司在Feature Store领域拥有各自的实现、云上产品和一些开源项目。
2021年12月11日,由第四范式开发者社区主办的“Feature Store Meetup”,特邀国内机器学习工程领域的五位前沿专家,就对于“如何利用Feature Store保证线上/线下的一致性,如何共享多个feature以减少重复性工作,如何满足低延迟线上预测实现,及Feature Store如何在各家实际场景中的实现与应用”进行交流探讨。
议程回顾
Part 1:Feature Store背景介绍及概念
第四范式架构师,开放原子基金会TOC副主席谭中意,在此次meetup中重点介绍了Feature Store的背景,概念及Feature Store的发展历史。
在机器学习落地过程中,数据部分面临众多挑战,其中包括模型训练需要海量的数据支持,如何保证训练和预测的一致性,如何保证足够低的延迟进行预测等等。针对这些挑战,出现了Feature Store。按照Uber的解释,Feature Store允许多个团队共享、发现和使用一个经过高度优化后的Feature。同时Feature Store还是跨组织中的不同团队构建、管理和共享功能的中心位置。
2017年Uber在对米开朗基罗机器学习平台介绍中首次提出Feature Store,自此该项目被业界广泛关注,发展至今已有多个大厂发布出了商业产品。国内对于Feature Store的关注也在慢慢兴起,2021年6月第四范式开源的OpenMLDB项目,则是国内首家为企业提供全栈FeatureOps解决方案的开源机器学习数据库。