题目描述
给你一个大小为n*n的矩阵,你需要对这个矩阵进行q次排序。
每一次排序会给你一个数 bi,你需要将当前矩阵的行按照第bi列的数进行稳定排序(稳定排序是指排序时相同的值的相对顺序不发生改变)
比如矩阵
4 5 6
1 2 3
3 2 7
如果按照第二列(5,2,2)进行排序的话
排序结果为
1 2 3
3 2 7
4 5 6
输入
第一行n(1<=n<=1000)
第2到n+1行为输入的矩阵,每行n个数,(1<=aij<=1000000)
a11 , a12 ... a1n
a21 , a22 ... a2n
...
an1 , an2 ... ann
接下来一个数q(1<=q<=1000),代表要排序的次数
接下来一行q个数,代表要排序的列数 bi
输出
排序后的矩阵
样例输入
3
4 5 6
1 2 3
3 2 7
2
2 3
样例输出
1 2 3
4 5 6
3 2 7
提示
第一次将排序按照第二列的数排序后的结果为
1 2 3
3 2 7
4 5 6
第一次将排序按照第三列的数排序后的结果为
1 2 3
4 5 6
3 2 7
AC代码
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n,m;
int index[1010];
typedef struct amap{
int b[N];
}amap;
amap a[N];
int comp(amap x,amap y)
{
for(int i=m-1;i>=0;i--){
if(x.b[index[i]-1] == y.b[index[i]-1]){
continue;
}
else if (x.b[index[i]-1] < y.b[index[i]-1]){
return 1;
}
else{
return 0;
}
}
return 0;
}
int main(){
cin>>n;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
cin>>a[i].b[j];
}
}
cin>>m;
for(int i=0;i<m;i++){
cin>>index[i];
}
sort(a,a+n,comp);
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
cout<<a[i].b[j]<<' ';
}
cout<<endl;
}
return 0;
}
关键
思想:优先级排序
经过多次排序得到的数组,和只经过最后一次的排序得到的数组相差不大。
差的只是如果最后一次排序的那一列有相同的数,则需要用次优先级排序(即倒数第二次排序)。
换句话说,如果最后一次排序的那一列没有相同的数,则经过多次排序得到的数组和只经过最后一次的排序得到的数组就一模一样了。
技巧:comp函数的编写
最后的return 0 不能掉。因为有可能函数不返回0或1.(因为如果比较到两数相等时,应该是不用动,所以return 0——就是不用换位的意思)。