python分析中的mode()

Pandas的mode()方法用于计算数据列的众数,即出现次数最多的值。当用于填充DataFrame的缺失值时,应使用df.fillna(df.mode().iloc[0]),因为mode()返回的结果可能包含多个众数。可以设置mode()的axis参数来对行或列求众数,并通过numeric_only控制是否只针对数值类型列进行计算。了解这些细节对于高效处理数据至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

mode():此方法用于获得该列“众数”

即本特征下取值最多的那个特征值(因而可能不止一个结果)


如果你想用mode()函数的计算结果填充DataFrame的缺失值,请使用这个方法:df.fillna(df.mode().iloc[0])

原因在于,每列的mode()结果不止一个,所以我们得到的是一个DataFrame。我们用其第一行进行缺失值填充。

DataFrame.mode(axis=0, numeric_only=False)

此外,根据mode()的参数,我们可以传入axis = 0或1,用于对列或者对行求众数;

还可以对numeric_only进行设置:选择numeric_only=True,即只对数值型的列进行

参考资料:

pandas日常使用笔记:iterrows()、mode()需要注意的东西_甘如荠-CSDN博客

Python Pandas dataframe.mode()用法及代码示例 - 纯净天空 (vimsky.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值