代码:
# 导入需要的库
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
import numpy as np
import math
#获取数据转为numpy数组
filename=pd.read_csv("C:/Users/86170/Desktop/exel/testdata.csv")
filename1=pd.read_csv("C:/Users/86170/Desktop/exel/test.csv")
sheet1=np.array(filename)
sheet2=np.array(filename1)
#分成特征与标签
le = LabelEncoder()
#label_mapping = {0: 'AD', 1: 'CN', 2: 'EMCI', 3: 'LMCI', 4: 'SMC'}
X=np.array(sheet1[1:10001,0:26])
Y=np.array(sheet1[1:10001,26:27])
new_X=np.array(sheet2[1:10001,0:26])
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
y_train=le.fit_transform(y_train)
y_test=le.fit_transform(y_test)
# 创建B