Casual Estimation of Memorisation Profiles(ACL最佳论文)

Causal Estimation of Memorisation Profiles(记忆概况的因果评估)ACL最佳论文

在这里插入图片描述

paper:Causal Estimation of Memorisation Profiles (ACL最佳论文奖)

github: pietrolesci/memorisation-profiles

论文概况

论文目的

该论文提出了一种在模型训练过程中量化学习记忆的方法,能够直观的看出模型在不同的step阶段学到了多少知识,从而评估模型不同阶段的记忆情况

论文动机

希望能量化评测模型在训练中的记忆情况,在不同的训练阶段记住了多少的知识

论文贡献

  • 发现记忆在更大的模型中更加深刻

  • 记忆受数据排列顺序和学习率影响

  • 在不同的模型大小中有稳定的趋势,因此可以从小模型中预测大模型的记忆

Method

前置知识

双重差分

基于计量经济学中的“Difference-in-differences” (DiD,双重差分),设计了一套评估模型记忆的体系

在计量经济学中,DiD设计关注四个关键数据点:

  1. 处理组在政策实施前的情况。
  2. 处理组在政策实施后的情况。
  3. 对照组在政策实施前的情况。
  4. 对照组在政策实施后的情况。

通过计算这四个数据点的差异,DiD方法试图减少其他未观测因素的干扰,更准确地估计政策本身的效果。

计算公式:
( 处理组后 − 处理组前 ) − ( 对照组后 − 对照组前 ) (处理组后 - 处理组前) - (对照组后 - 对照组前) (处理组后处理组前)(对照组后对照组前)

个体治疗效果

τ x , c def ≡ Y c ( x ; g ) ⏟ performance on  x  when trained with  x − Y c ( x ; ∞ ) ⏟ performance on  x  when not trained with  x \tau_{x,c}^{\text{def}} \equiv \underbrace{Y_c(x; g)}_{\text{performance on } x \text{ when trained with } x} - \underbrace{Y_c(x; \infty)}_{\text{performance on } x \text{ when not trained with } x} τx,cdefperformance on x when trained with x Yc(x;g)performance on x when not trained with x Yc(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EEE1even

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值