方式一:同步调用
-
优点:实现简单,粗暴
-
缺点:业务耦合度高
方式二:异步通知
-
优点:低耦合,实现难度一般
-
缺点:依赖mq的可靠性
方式三:监听binlog
-
优点:完全解除服务间耦合
-
缺点:开启binlog增加数据库负担、实现复杂度高
-
Logstash JDBC 插件:
- Logstash 是一个强大的数据采集、处理和传输工具。
- 使用 Logstash 的 JDBC 插件可以从 MySQL 数据库中读取数据,并使用 Logstash 将这些数据推送到 Elasticsearch。
- 配置可能会相对复杂,但功能强大。
-
Debezium:
- Debezium 是一个开源的CDC(Change Data Capture)工具,它可以捕获数据库中的更改并将其传输到另一个系统。
- 它支持多种数据库,包括 MySQL,并且可以与 Elasticsearch 集成。
- Debezium 使用 Kafka 作为传输层,因此您还需要一个 Kafka 集群。
-
Canal:
- Canal 是阿里巴巴开源的一个项目,它是基于 MySQL 的 CDC(Change Data Capture)工具。
- 与 Debezium 类似,Canal 可以捕获 MySQL 中的更改并将其传输到其他系统,例如 Elasticsearch。
-
Maxwell's Daemon:
- Maxwell's Daemon 是一个基于日志的变更数据捕获工具,用于 MySQL 和其他数据库。
- 它可以从 MySQL binlog 中捕获更改,并将其传输到其他系统。
-
自定义脚本/程序:
- 使用 Python、Java、Go 等编程语言编写脚本或程序,从 MySQL 中读取数据,并将其插入到 Elasticsearch 中。
- 这需要编写代码来处理数据的转换和传输。
-
使用工具/中间件:
- 有一些商业和开源工具/中间件可以帮助实现 MySQL 和 Elasticsearch 之间的数据同步,例如 Talend、Grafana Loki 等。
-
定期批量导入:
- 这不是实时的解决方案,但可以定期(例如,每小时、每天或每周)从 MySQL 导出数据并将其导入到 Elasticsearch 中。