一、json是各种语言的媒介
import json
d=json.load(s) 把json串转为字典
s=json.dump(d) 把字典转为字符串
二、多线程
什么是线程
线程 >>>轻量级进程 >>>操作系统能够进行运算调度的最小单位,被包含在进程中,是进程中的实际运作单位。>>>线程自己不拥有系统资源,只拥有一点在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所拥有的全部资源,一个线程可以创建和撤销另一个线程,同一个进程中的多个线程可以并发执行。
多线程的优点
- 进程间不能共享内存,但线程之间共享内存很容易
- 操作系统在创建进程时需要为该进程重新分配系统资源 ,但创建线程的代价则小得多,因此使用多线程并发执行比使用多进程的效率高
- python语言内置了多线程功能的支持
但python的多线程是伪多线程,实际上是一个cpu来回切换执行线程,造成一种多线程的假象,在一时刻只有一个线程进行
普通创建多线程
import threading
import time
def run(n):
print("task",n)
time.sleep(1)
print("3s")
time.sleep(1)
print("2s")
time.sleep(1)
print("1s")
time.sleep(1)
print("0s")
time.sleep(1)
def run(n):
for i in range(1,101):
print(n,"跑了",i,"米")
if __name__ == '__main__':
t1 = threading.Thread(target=run,args=("刘",)) target指向方法 args指向传入的参数(元组,)原方法需要传入两个参数
t2 = threading.Thread(target=run, args=("付",))
t3 = threading.Thread(target=run, args=("孙",))
t1.start() 开始运行线程
t2.start()
t3.start()
自定义线程
继承threading.Thread来自定义线程类,其本质是重构Thread类中的run方法
class MyThread(threading.Thread): 继承父类
def __init__(self,n):
super().__init__() 调用父类方法
self.n = n
def run(self):
for i in range(1,101):
print(self.n,"跑了",i,"米")
if __name__ == "__main__":
t1 = MyThread("付") 只需传入一个参数,默认调用run方法
t2 = MyThread("孙")
t3 = MyThread("刘")
t1.start()
t2.start()
t3.start()
守护线程setDaemon
主线程技术子线程随主线程结束而结束
t1.setDaemon(True) 把t1设置为守护线程
t2.setDaemon(True)
t3.setDaemon(True)
主线程等待兹县茨城JOIN
t1.setDaemon(True) 设置守护
t1.start() 开始运行
t1.join() 主线程等待t1线程结束在结束
互斥锁Lock
一次只允许一个线程进入
from threading import Thread,Lock
import os,time
def work():
global n
lock.acquire() 加锁,此时只有一个进程进入
temp=n
time.sleep(0.1) 在修改的地方上锁
n=temp-1
lock.release() 释放,
if __name__ == '__main__':
lock=Lock()
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join()
#lock=threading.lock()
递归锁Rlock
rlock锁的用法和lock锁一样,但rlock锁支持嵌套,在多个锁没有被释放时一般使用rlock锁
lock=threakding.RLock()
信号量BoundedSemaphore
一次性允许多个线程运行,可以限制锁内线程的个数
semaphore=threading.BoundedSemaphore(5)
最多允许5个线程同时进行
事件Event
用于控制其他线程的执行,事件是一个简单的线程同步对象
- clear将flag视之为Flase
- set将flag设置为True
- is_set判断是否设置了flag
- wait会一直监听flag,如果没有检测到flag就一直处于阻塞状态
事件处理机制:全局定义一个"Flag",当flag值为Flase,那么event.wait()就会阻塞,当flag值为True,那么event.wait()不再阻塞.。
# 利用Event类模拟红绿灯
import threading
import time
event = threading.Event()
def lighter():
count = 0
event.set() # 初始值为绿灯
while True:
if 5 < count <= 10:
event.clear() # 红灯,清除标志位
print("\33[41;1mred light is on...\033[0m")
elif count > 10:
event.set() # 绿灯,设置标志位
count = 0
else:
print("\33[42;1mgreen light is on...\033[0m")
time.sleep(1)
count += 1
def car(name):
while True:
if event.is_set(): # 判断是否设置了标志位
print("[%s] running..." % name)
time.sleep(1)
else:
print("[%s] sees red light,waiting..." % name)
event.wait()
print("[%s] green light is on,start going..." % name)
light = threading.Thread(target=lighter, )
light.start()
car = threading.Thread(target=car, args=("MINI",))
car.start()
GIL(global interperter lock)全局解释器锁
在非python环境中,单核情况下,同时只能有一个任务执行。多核时支持多个线程同时执行。但在python中,无论有多少个核,同时只能执行一个线程,就是gil导致的。
通俗而言就是,在执行一个进程中一个大锁把所有的线程固定在一个核上