自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(124)
  • 收藏
  • 关注

原创 基于C++标准库实现定时器类

一般的Timer的接口都是支持一次性(alarm once)和周期性(alarm period)两种模式的,python的threading.Timer接口显然只支持alarm once模式, 虽然也可以通过在alarm once回调函数里再次创建timer的方式等价的实现alarm period模式, 不过我最近参考。接下来给出条件变量版本的C++的Timer类实现,如果C版本的代码看得懂,那C++版本的代码就可以说是一目了然,毕竟C++的版本是“直译”过来的。

2024-06-28 15:07:16 1636

原创 如何判断一个js对象是否存在循环引用

在前端是我们常用的一个方法,可以将一个对象序列化。例如将如下对象序列化我们发现上面对象是可以使用JSON.stringfy序列化的。personowner我们对上面这个对象进行JSON.stringfy,结果如下,会报错:我们发现他说不能转化一个“圈结构体为JSON”,是因为这个对象的owner属性指向了自己。在转化的时候会变成死循环。

2024-06-28 14:57:21 377

原创 Testimonials

Get startedStart watching lesson 1 now!The Economist“This month fast.ai, an education non-profit based in San Francisco, kicked off the third year of its course in deep learning. Since its inception it has attracted more than 100,000 students, scattered ar

2024-06-06 08:47:26 799

原创 Kaggle

Kaggle is the world’s largest data science community. One of Kaggle’s features is “Notebooks”, which is “a cloud computational environment that enables reproducible and collaborative analysis”. In particular, Kaggle provides access to GPUs for free. Every

2024-06-03 08:38:51 914

原创 Forums

If you need help, there’s a wonderful online community ready to help you at forums.fast.ai. Before asking a question on the forums, search carefully to see if your question has been answered before. (The forum system won’t let you post until you’ve spent a

2024-06-03 08:38:10 430

原创 The book

section.

2024-05-31 10:06:22 266

原创 25、潜伏扩散(Latent diffusion)

Video。

2024-05-31 09:08:41 166

原创 24、注意力和变压器(Attention & transformers)

rearrange。

2024-05-29 15:51:31 427

原创 23、超分辨率(Super-resolution)

In this lesson, we work with Tiny Imagenet to create a super-resolution U-Net model, discussing dataset creation, preprocessing, and data augmentation. The goal of super-resolution is to scale up a low-resolution image to a higher resolution. We train the

2024-05-29 15:50:12 1586

原创 22、Karras et al (2022)

Jeremy begins this lesson with a discussion of improvements to the DDPM/DDIM implementation. He explores the removal of the concept of an integral number of steps, making the process more continuous. He then delves into predicting the amount of noise in an

2024-05-28 08:38:47 706

原创 21、DDIM

In this lesson, Jeremy, Johno, and Tanishq discuss their experiments with the Fashion-MNIST dataset and the CIFAR-10 dataset, a popular dataset for image classification and generative modeling. They introduce Weights and Biases (W&B), an experiment trackin

2024-05-28 08:37:58 306

原创 20、混合精度(Mixed Precision)

In this lesson, we dive into mixed precision training and experiment with various techniques. We introduce the MixedPrecision callback for PyTorch and explore the Accelerate library from HuggingFace for speeding up training loops. We also learn a sneaky tr

2024-05-27 15:40:14 493

原创 19、DDPM和辍学(DDPM and Dropout)

In this lesson, Jeremy introduces Dropout, a technique for improving model performance, and with special guests Tanishq and Johno he discusses Denoising Diffusion Probabilistic Models (DDPM), the underlying foundational approach for diffusion models. The l

2024-05-27 15:39:29 304

原创 18、加速SGD和ResNets(Accelerated SGD & ResNets)

In this lesson, we dive into various stochastic gradient descent (SGD) accelerated approaches, such as momentum, RMSProp, and Adam. We start by experimenting with these techniques in Microsoft Excel, creating a simple linear regression problem and applying

2024-05-24 15:21:55 351

原创 17、初始化/规范化(Initialization/normalization)

In this lesson, we discuss the importance of weight initialization in neural networks and explore various techniques to improve training. We start by introducing changes to the miniai library and demonstrate the use of HooksCallback and ActivationStats for

2024-05-24 15:21:03 307

原创 16、学习者框架(The Learner framework)

In Lesson 16, we dive into building a flexible training framework called the learner. We start with a basic callbacks Learner, which is an intermediate step towards the flexible learner. We introduce callbacks, which are functions or classes called at spec

2024-05-17 13:21:47 816

原创 15、自动编码器(Autoencoders)

We start with a dive into convolutional autoencoders and explore the concept of convolutions. Convolutions help neural networks understand the structure of a problem, making it easier to solve. We learn how to apply a convolution to an image using a kernel

2024-05-17 13:20:33 427

原创 14、反向传播(Backpropagation)

【代码】14、反向传播(Backpropagation)

2024-05-16 09:00:50 310

原创 13、反向传播和MLP(Backpropagation & MLP)

【代码】13、反向传播和MLP(Backpropagation & MLP)

2024-05-16 08:59:30 373

原创 12、均移聚类(Mean shift clustering)

In this lesson, we start by discussing the CLIP Interrogator, a Hugging Face Spaces Gradio app that generates text prompts for creating CLIP embeddings. We then dive back into matrix multiplication, using Einstein summation notation and torch.einsum to sim

2024-05-15 09:08:53 473

原创 11、矩阵乘法(Matrix multiplication)

In this lesson, we discuss various techniques and experiments shared by students on the forum, such as interpolating between prompts for visually appealing transitions and improving the update process in text-to-image generation, and a novel approach to de

2024-05-15 09:08:03 480 1

原创 10、深入挖掘(Diving Deeper)

【代码】10、深入挖掘(Diving Deeper)

2024-05-14 11:07:07 518

原创 9、稳定扩散(Stable Diffusion)

score。

2024-05-14 11:06:00 384

原创 摘要Summaries--课时八(Lesson 8)

Building embeddings from scratch

2024-05-13 13:12:02 1635

原创 摘要Summaries--课时七(Lesson 7)

Gradient accumulation and GPU memory

2024-05-13 13:09:34 1458

原创 摘要Summaries--课时六(Lesson 6)

【代码】摘要Summaries--课时六(Lesson 6)

2024-05-11 08:52:36 724

原创 摘要Summaries--课时五(Lesson 5)

Linear model and neuralnet from scratch

2024-05-11 08:51:38 646

原创 摘要Summaries--课时四(Lesson 4)

New and Exciting Content Why Hugging Face transformer Will we in this lecture fine-tune a pretrained NLP model with HF rather than fastai library? Why use transformer rather than fastai library? Is Jeremy in the process of integrating transformer int

2024-05-10 08:46:04 903

原创 摘要Summaries--课时三(Lesson 3)

Introduction and survey “Lesson 0” How to fast.ai Where is Lesson 0 video? What does it to do with the book ‘meta learning’ and fastai course? How to do a fastai lesson? Watch with note Run the notebook and experiment Reproduce the notes from t

2024-05-10 08:44:13 699

原创 摘要Summaries--课时二(Lesson 2)

Daniel 深度碎片。

2024-05-09 09:02:42 788

原创 摘要Summaries--课时一(Lesson 1)

Daniel 深度碎片。

2024-05-09 09:00:54 348

原创 奖励:数据伦理(Bonus: Data ethics)

Video。

2024-05-08 08:52:40 1280

原创 8、卷积Convolutions (CNN)

embeddingsVideoResources。

2024-05-08 08:51:26 390

原创 7、协同过滤(Collaborative filtering)

VideoResources。

2024-05-07 17:31:39 401

原创 6、随机森林(Random forests)

Video。

2024-05-07 17:30:50 308

原创 从头开始的模型(From-scratch model)

sigmoidmetricsVideo。

2024-05-06 16:42:32 771

原创 自然语言(NLP)

VideoResources。

2024-05-06 16:41:03 487

原创 神经网络基础(Neural net foundations)

(ReLU).Video。

2024-04-30 08:48:59 382

原创 部署(Deployment)

Video。

2024-04-30 08:47:28 436 1

原创 入门(Getting started)

VideoResources。

2024-04-29 09:24:36 588

基于C++的几个递归函数运用(.cpp)

基于C++的几个递归函数运用(.cpp)

2023-08-15

基于C++的完全背包问题(.cpp)

基于C++的完全背包问题(.cpp)

2023-08-15

基于C++的简单冒泡排序(记录)

记录一个在编程中比较经典的考试题目

2023-08-04

模拟退火案例-旅行商问题(python)

基于Python模拟退火算法的实际案例,计算城市之间的路径最优解。

2023-07-31

TCP协议socke套接字(服务端&客户端)网络协议配置代码

网络套接字(socket)编程,深入理解TCP、UDP协议;用select网络框架,写一个简单的C/S程序,可以正常运行。此代码是我用来记录学习网络套接字的过程,代码是在linux操作系统的vim界面下基于C++编写的,如果在VS或者其他编译器出现提示不包含一些头文件,是正常的现象,因为其中的一些头文件是linux操作系统才有的(自己踩过的坑hhhh)。

2023-07-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除