我支持云厂商跟客户描绘AI大饼,这就是一种例行宣传,只要别在忽悠客户的时候,先把自己忽悠瘸了。
我的《云计算行业进阶指南》书稿去年就定稿了,我在书里搜索“AI”和“人工智能”,也能搜到十几份有关的内容。复盘了一下印刷的内容,我还算言行一致,书里的观点至今没有触礁打脸。
我结合书稿写一篇深读实证系列文章,谈一谈公有云厂商和AI到底有几毛钱的关系?前几章主要是祛魅和辟谣,最后一章我也来点有专业性和可行性的云计算畅想。想买本书的朋友,可以直接扫码下单:
1. 云厂商只卖云产品
现在各种热火朝天的个人AI产品,和云产品云技术没有任何关联,云厂商只需要借着这个热闹的议题,卖给客户做AI用的算力云资源。云厂商鼓励客户去做AI淘金,反正你淘金的铲子也要从云厂商这里买。AI普及会让普通工人也变成程序员,这会对云厂商产生重大影响,但那是另一个境界的问题了,那一段内容我放到了文末第六节。
云计算基础定义中有两个重要条件“买单人必须是企业客户”+“操作者必须是IT工程师”。这些火爆的AI应用,操作员都是普通人,大概率也是个人付费,因此云厂商不需要过度看重AI云产品。云厂商跟客户畅谈AI业务,这就类似于媒婆夸相亲者“有可能会”早生贵子,属于例行客套。
云厂商会跟很多非互联网企业畅谈AI技术趋势时,客户就顺杆往上爬,要求云厂商为客户做AI相关的系统集成。给客户做AI系统集成并不难,很多草台班子小团队就能胜任这些工作,但是云厂商没有能力承接这类工作,这其中的原因既复杂也简单,和我不支持云厂商做SaaS的理由类似。
从复杂和本源的角度看,云计算只关注中后台通用IT技术工作,不关注面向业务逻辑和面向个人感受的工作;单个客户的业务能否成功,和云产研的个人业绩毫无关联;云厂商的toB基因都还没发育完整,就别做toC的梦了。
简单来说,你收客户几千万的GPU租金,但只收几十万的苦力研发费用。首先客户想抹零,让云厂商把研发费用给Free了;更重要的是,客户可能会为研发系统的验收异常,而拖沓拒付GPU租金。
还有个腹黑的原因,客户只要自己租下了GPU卡池,为了GPU资源不浪费,自己也会摸索各种AI技术。但如果云厂商给客户做系统集成,客户没有了沉没成本,中途撤销项目的概率更大。
2. 书中对AI算力云已有定论
我的书稿第2.4章节,主要谈的是“理性看待迟滞和亏损”;在本节的最后一部分,我提到了AI算力云是一个崭新的业务增长点,但有三个限制导致它成不了大型云厂商走出迟滞和亏损的救命稻草。
我去年写过一篇《公有云和ChatGPT关系不大》,对GPU生态流程过短的问题,也做了明确的描述,但这是个深邃的议题,本文就不过度展开了。
一份CPU云资源的背后,肯定会伴生着机柜电力、带宽、服务器机框、硬盘、网络、操作系统、中后台服务软件,这些资源都是比CPU更重要的卖点。客户在为这些卖点付费时,也会为CPU付费,云厂商也有充分的错峰复用和技术保障的工作空间。
一份GPU资源的背后,肯定会有着海量的电力需求,但那些伴生的软硬件都在服务于GPU业务,没有任何独立于GPU和AI计算的产品价值。GPU能不能卖得掉,就只看有没有爆款GPU业务,所以其供需稳定性远远差于CPU业务。
3. AI算力云的初级形态
AI场景下使用的IaaS云产品,可以被称为AI算力云。这类产品的初级形态就是倒卖GPU、电力以及配套资源。
首先,我们要明确一个时间问题,从AI绘图到ChatGPT,AI业务应用的火爆期还没到两年。英伟达自己都被突发需求震撼到了,逐渐才完成的产能爬坡。
AI算力云出场时就是一场抢卡大战,但现在已经是一地鸡毛。在2023年上半年,云厂商能拿到GPU货源,客户会抢着来找你;在2023年下半年,云厂商能找到便宜的IDC电力,就能满足客户的需求。到2024年,市面上的GPU供需很稳定了,没有在2023年锁定客户长租GPU的云厂商,销售能力都不咋地。
大部分云厂商的AI算力云就停留在这个层次了,从技术和产品上看,就是给普通的云主机或者裸金属加上了GPU板卡、配置了更贵的散热和网卡而已。本书有个介绍“低技术投入做简易型云平台”的章节,就随口就介绍到人工智能群集,这个层次的AI算力云,它真的不值得我去专门做产品和技术分析。
谈完AI算力云,我再说个好玩的事儿,我在介绍离线数据中心时,强调其优点是电费便宜,但网络延迟太高,卖不上价格,我也发愁东数西算的西部节点该怎么卖出去。结果国运来了谁都挡不住,AIGC、AI对话都只在意电费价格、不在意网络延迟。请大家看我的书稿118页的截图:
4. AI算力云的高级形态
云厂商离客户离应用场景更近,也不缺技术和资金,天生可以钳制硬件供应商,再强势的硬件供应商也吃不了太久的独食。在短短两年时间里,云厂商还来不及做出实质动作,但是云厂商不会一直给硬件厂商打工。
无论国内还是海外的大型云厂商做AI算力云,肯定不想止步于给一个硬件厂商卖GPU板卡,就算没能力自研也要找几个第二供应商。云厂商能从三个角度切入AI算力云:
更换硬件,云厂商可以自研或采购国产芯片,也可以自研网络硬件来取代IB和Nvlink;
自研或支持第三方GPU并行处理框架,平替掉CUDA;
自研AI开发平台,取代OpenAI,就是各种百模大战。
第1、2类工作我明确看到云厂商的实质性动作,甚至写了一些分析文章;我对百模大战的了解较少,暂不对这类工作发表评价。请大家给云厂商多一点点时间,只要AI算力云是高营收高利润生意,一群云厂商就会冲上去把它做成平价生意,这才是解放IT生产力。
5. AI PaaS云很没钱途
云厂商普遍有一种大病,就是在IaaS、PaaS分类不清晰的前提下,盲目跪舔PaaS云和SaaS云。我很反感这种虚空打靶盲目跪舔,我的书稿第八章,整个章节都是在介绍如何区分IaaS、PaaS和SaaS分类。
到了AI这种新概念上,因为个人使用的AI实在不好吹成SaaS,很多云厂商就对AI PaaS云莫名其秒的兴奋起来了。但我给出明确结论,AI PaaS云,三年之内也不可能获得大额营收。
AI PaaS云早就有相关产品了,只是这一波生成式对话大模型还没有典型产品。基于PaaS云的定义,我们能猜到明确的产品形态:客户只需要调用云厂商的接口,然后云厂商后台执行AI计算任务,客户获得AI处理过的数据;云厂商付出了硬件资源、软件开发和技术维护,向客户按次数收取费用。
AI技术已经在鉴黄、图片识别等领域大量应用,并且封装成标准PaaS云产品了。但是这些产品离客户业务越近、销售潜力就越低,最终几乎被大众遗忘。基于大模型做出的PaaS云产品,即使客户大量使用,也就只有这点商业潜力。
PaaS云替客户完成了软件技术平台的搭建工作,这就要求云厂商的技术水平比客户更高。但是现在租赁AI算力云的都是大型企业客户,技术应该不比云厂商更差吧?
其他PaaS云产品都有海量的小客户和开发者使用,这一波大模型浪潮,从技术选型上就是参数越多越好、数据越多越好,天生不利于小客户参与。
6. 展望未来,AI程序员能改变云厂商
我不会关注AI今天能放屁、明天能打嗝的各种震惊新闻,AI在逐渐改变着程序员(云计算的操作用户)的面貌,这才是云厂商最应该关注的内容。因为前文写了很多给AI祛魅泼冷水的内容,本节我也做一些积极的云计算创新畅想。
我在书稿的第6页就提到,IT技术的分工趋势是:工程师的人数越来越多,但从业者的个人素质大幅降低。现在全球已经几千万程序员了,如果继续招聘IT工程师,那需要几亿人搞IT吗?在这个分工趋势下,云厂商抢过了油水最丰厚的中后台IT工作,留给客户的都是面向业务逻辑的低端IT工作。
这波大模型浪潮刚启动时,我就注意到ChatGPT可以写代码了。以前低代码、无代码吹了很多牛,但实际上就是写娱乐专用的伪代码,技术价值还不如Excel里的VBA。现在的AI编程,是和自然人程序员一样写正规的Code。这样做的技术难度很容易理解,人类编程就是把汉语英语翻译成计算机语言,AI最擅长的就是语言翻译了。
现在的各种AI编程演示中,AI只能写一些目标明确的脚本和函数。深究其原因,并不是AI编程能力差,而是提问者很难向AI说明,自己对软件功能、目标性能、平台架构的理解和预期。基于上述原因,AI写代码只红了几天,就被其他更有噱头的创新给盖过去了。
和AI对话编程时,新手提问者的认知水平不够,你都不提任何有效需求,AI怎么能给你翻译成合格的代码?
和AI对话编程时,高手确实能把上下文解释清楚了,但为了偷懒让AI写200行代码,自己打五千个汉字,这有点得不偿失。
在其他语境里近乎无解的AI编程,在云计算语境下突然就眉清目秀起来了——特别是固定好后台逻辑、前台功能也大幅删减的ServerLess,如果得到AI编程的助力,那就是土飞机秒变五代机。在云平台上做AI编程,用户不用想大部分提示词内容;云厂商对中低端程序员做好引导,也能削减复杂的软件编程功能需求。
AI编程的目标不是给顶尖程序员打下手,让一个人能写十个人的代码,而是进一步降低IT编程的工作难度,提高程序员的人口总数。云厂商多次尝试让云研发深入了解客户生产业务,结果没有一次成功的。那我们换个思路解决问题,客户有一些思维逻辑清晰的流水线技工和办公室文员,如果他们靠AI编程的辅助,提高了自身的IT能力,就可以填充云计算和客户业务之间的差距,让IT技术的洪荒之力有力地帮助实体生产类业务。
我的书稿里专门提到如果云产品的操作者用户群发生重大变化,那么云产品就会出现很多创新机会。当云厂商用当云厂商用自研(或合作)的AI引擎为客户生成代码后,这段代码可以和云厂商做彻底的业务逻辑绑定,不仅客户无法迁移走,云平台也可以借机完成很多云产品的创新或者功能删减和降本增效。
云厂商与其天天吹那些假大空的AI概念,不如做点实事,探一探AI编程的新道路。AI编程这条赛道,即是企业客户付费,操作员还是特别好说话、特别好引导萌新IT工程师,挖掘他们比伺候精通IT技术的老用户容易多了……