从通达信中获取得到股票、期货等金融标的的分时数据。

本文介绍了如何从通达信软件中下载股票、期货等金融标的的分时数据,包括1分钟和5分钟的盘后数据。通过下载免费的通达信软件,选择盘后数据下载功能,以中证主连为例,获取2022.01.01至2023.01.01的5分钟数据。数据保存在new_tdx/vipdoc/ds/fzline文件夹内,例如47#ICL8.lc5代表中证500期货主力合约的5分钟数据。若需要其他周期数据,可利用已有分钟数据进行合成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先下载一个通达信

### 通达信分时图MACD指标的计算方法 在金融领域中,MACD(Moving Average Convergence Divergence)是一种常用的技术分析工具。为了获取通达信股票分时图中的MACD指标数据并用Python进行处理,可以采用以下方式: #### 方法概述 1. **数据源准备** 使用Tushare或其他第三方API获取实时行情数据[^3]。这些数据通常以DataFrame形式存储,便于后续操作。 2. **MACD计算逻辑** MACD由三部分组成:DIFF、DEA以及柱状图BAR。其具体公式如下: - DIFF = EMA(收盘价, 短期) - EMA(收盘价, 长期)[^1] - DEA = EMA(DIFF, M)[^1] - BAR = (DIFF - DEA) * 2 这里EMA表示指数平滑移动平均线,短期一般取12天,长期取26天,M取9天。 3. **实现代码** 以下是基于Pandas库和Numpy库编写的MACD计算代码示例: ```python import pandas as pd import numpy as np def calculate_macd(dataframe, short_window=12, long_window=26, signal_window=9): """ 计算MACD指标 参数: dataframe: 包含'close'列的价格数据 DataFrame short_window: 短期窗口大小,默认为12 long_window: 长期窗口大小,默认为26 signal_window: DEA信号线窗口大小,默认为9 返回: DataFrame: 添加了'DIFF', 'DEA', 'MACD_BAR'列的数据框 """ # 计算短期和长期EMA ema_short = dataframe['close'].ewm(span=short_window, adjust=False).mean() ema_long = dataframe['close'].ewm(span=long_window, adjust=False).mean() # 计算DIFF和DEA diff = ema_short - ema_long dea = diff.ewm(span=signal_window, adjust=False).mean() # 计算MACD柱状图 macd_bar = (diff - dea) * 2 # 合并到原始数据帧 dataframe['DIFF'] = diff dataframe['DEA'] = dea dataframe['MACD_BAR'] = macd_bar return dataframe ``` 4. **接口调用与数据处理** 如果需要对接通达信软件,则可通过`pytdx`库读取通达信本地数据[^4]。例如,可以从通达信服务器拉取指定证券品种的历史K线或分时数据,并将其转换成适合上述函数使用的格式。 #### 注意事项 - 数据质量直接影响最终结果准确性,请确保输入价格序列无缺失值。 - 实际应用过程中可能还需要考虑时间戳对齐等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值