题目描述
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
题目示例
输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
解题思路
- 贪心算法
- 动态规划
本题使用以上两种算法都可以解决,该文章讲解使用贪心算法解决该题,需要考虑以下三种情况:
- 上下坡有平坡
- 数组首尾两端
- 单调坡中有平坡
参考代码
class Solution {
public int wiggleMaxLength(int[] nums) {
if(nums.length <= 1) {
return nums.length;
}
int result = 1;
int prediff = 0;
int curdiff = 0;
for(int i = 1; i < nums.length; i++) {
curdiff = nums[i] - nums[i-1];
if((prediff >= 0 && curdiff < 0) || (prediff <= 0 && curdiff > 0)) {
result++;
prediff = curdiff;
}
}
return result;
}
}