综合能源系统(4)——综合能源系统建模方法

综合能源系统关键技术与典型案例  何泽家,李德智主编
本文主要从物理、信息、价值三个方面介绍综合能源系统关键技术,如图3-1所示。
在这里插入图片描述

  • 物理方面:主要包括综合能源系统建模分析技术、规划设计(配置)技术、优化控制技术、运行维护技术和综合评估技术等。
  • 信息方面:主要包括综合能源系统支撑技术(大数据、云计算、物联网、移动互联、人工智能、区块链)、运行管控平台技术等。
  • 价值方面:主要包括综合能源系统交易机制、商业模式技术等。

综合能源系统建模方法

综合能源系统能够实现电、气、热、冷等多类型能量的耦合互补与综合利用,但多能源之间耦合关系复杂,系统设备数量多,源荷双侧存在不确定性,综合能源系统总是处于动态变化状态,需要利用数字化技术提升综合能源系统优化运行水平,进而实现能量的梯级利用,促进能源网络中的统筹利用和运行管理,提升能源综合利用率以及能源供应的灵活度与增加经济收益。综合能源系统基本架构如图3-2所示。
在这里插入图片描述
综合能源系统建模方法是针对综合能源系统中的各种能量的生产、传输、转化、存储、利用等过程构建其数学描述方程的技术,是数字化技术在综合能源系统应用的基础。目前综合能源系统建模方法主要有:能源集线器建模方法、能量母线建模方法、统一能路建模方法、广义能流建模方法等。

1、能源集线器建模方法

在众多综合能源系统建模方法的探讨过程中,苏黎世联邦理工学院的GoranAnderson 等人基于计算机科学中集线器的概念,在能量传输网络中引申出了能源集线器(Energy Hub)模型,将人类用能需求抽象为电、热、冷三类。源集线器则负责将其他能源转化为这三类能源输出,或实现上述三类能源之间的相互转化是对现有各类综合能源单元方案(如Microgrid、Energy Services Supply Systems、Hybrid Energy Systems 等)的一种高度抽象化,实现了对能源传输系统中多种能量耦合关系模型的刻画,引起学术界和工业界的广泛关注。能源集线器将能源供应与用能需求高度抽象并分类,主要包含能源互联器模型(Energy Interconnector,EI)和能源集线器模型(Energy Hub,EH)两部分。其中,前者体现多种能源的协同传输理念:后者体现能源转化、存储、分配的功能,是能源互联网中多种能源相互转化的中心。

能源集线器模型概念目前被广泛用于区域多能源系统的建模中。图3-3为能源集线器统一模型。从系统的角度来看,能源集线器可以看作一个能够为不同的能源载体提供基本的输入/输出特性,能量转化以及能量存储的结构单元。因此,能源集线器可以作为传统电力系统节点的一种泛化和延伸,使得系统可以更加灵活地的用或分配不同形式的能源,以满足日益多样化的负荷需求。
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

2、能量母线建模方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

3、统一能路建模方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、广义能流建模方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 综合能源系统物理建模的MATLAB实现 综合能源系统(Integrated Energy System, IES)是一种多能互补的能量管理系统,涵盖了电力、热力、天然气等多种形式的能量流动。在MATLAB中对其进行物理建模时,可以借鉴飞轮储能系统的建模思路[^1],即通过定义系统的物理特性、构建数学模型以及设计控制策略来完成整个仿真的搭建。 #### 1. 物理模型 综合能源系统的物理模型主要包括各个子系统的参数化描述,例如发电机组的动力学特性、储热装置的蓄热量变化规律、燃气管网的压力分布等。对于每种设备或组件,都需要明确其输入输出关系及其内部状态的变化机制。以水电厂为例,在一天内的运行计划可以通过如下方式表示: ```matlab hydr = ones(1, num_hours); % 初始化水电机组出力矩阵 ``` 上述代码片段展示了如何创建一个简单的水电厂调度向量 `hydr` ,其中每一小时对应一个单位功率值[^5]。当然实际应用中的表达会更加复杂,可能涉及到更多维度的数据结构以及动态调整逻辑。 #### 2. 数学模型 为了精确刻画IES的整体行为模式,需依据能量守恒原则和其他相关领域知识建立起一组联立微分方程或者代数方程作为基础框架。这部分工作往往依赖于特定场景下的假设条件和技术细节处理。比如采用最小二乘法拟合历史数据得到某些关键系数的最佳估计值[^2];又或者是利用深度学习架构如ELMAN神经网络[LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM]来进行非线性映射的学习过程[^4]。 以下是基于ODE求解器的一个简化实例演示: ```matlab function dydt = energy_system(t,y,params) J = params.J; % 飞轮转矩常数 f = params.fric; % 摩擦阻力因子 w = y(1); dw_dt = -(f/J)*w; dydt = [dw_dt]; end tspan = [0 10]; % 时间区间设定为0到10秒 init_cond = [pi/4]; % 初始角速度设为π/4 rad/s params.J = 0.01; % 假定J=0.01 kg·m² params.fric = 0.1; % 设定摩擦系数为0.1 N·s/m [t,y] = ode45(@(t,y)energy_system(t,y,params), tspan , init_cond); plot(t,y,'LineWidth',2); xlabel('Time (sec)'); ylabel('\omega(rad/sec)'); title('Flywheel Speed Over Time'); grid on; ``` 此脚本模拟了一个理想化的单自由度旋转体随时间减速的过程,虽然它原本是用来展示飞轮特性的例子,但同样适用于其他具有相似动力学特征的对象研究之中——只需替换掉相应的变量名即可适应新的工程背景需求。 #### 3. 控制策略 针对不同目标函数优化要求制定相应调控措施至关重要。传统意义上常用的是比例积分微分(PID)调节器等形式简单却效能显著的方法;而在现代智能化趋势下,则越来越多地引入先进的人工智能技术手段参与决策支持环节当中去。无论是哪种途径选取都离不开前期扎实可靠的理论推导与实验验证阶段的支持保障作用发挥出来才行得通啊! 最后提醒一下大家注意合理安排好项目进度表哦~ ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值