(2016)居住传感系统和居住建模方法在机构建筑中的应用综述

Energy & Buildings(2016)

居住传感系统和居住建模方法在机构建筑中的应用综述

Review of occupancy sensing systems and occupancy modeling methodologies for the application in institutional buildings

作者:Junjing Yanga,∗, Mattheos Santamourisb, Siew Eang Leea
a Department of Building, National University of Singapore, Singapore 新加坡新加坡国立大学建筑系
b Physics Department, Group Building Environmental Research, National and Kapodistrian University of Athens, Greece希腊国立雅典大学和卡波布迪安大学环境建设研究所物理系

摘要ABSTRACT

建筑物的占用率信息对于室内环境质量、能耗和建筑能耗模拟至关重要。然而,收集和建模入住信息并不容易。在机构建筑的框架内,巨大的入住率和极高的入住率变化将对入住率计算和建模提出更高的挑战。本文回顾了建筑中的技术和建模方法,列出了在机构建筑中应用的优缺点,以供进一步考虑。

关键词Keywords

占用Occupancy
机构建筑Institutional building
传感器Sensors
占用率建模 Occupancy modeling

1.引言Introduction

1.1.居住对建筑能耗和室内环境性能有很大影响Occupancy has great impact on building energy consumption as well as the indoor environmental performance

占用信息是建筑能耗和室内环境质量的重要信息之一。居住者的存在会将感热和潜热释放到室内空间,居住者的行为,如操作窗户、打开/关闭灯和风扇,也会影响室内负荷。Azar和Menassa发现,建筑能耗对占用相关行为参数高度敏感。Yang和Becerik Gerber[2]进一步研究了在三层办公楼中使用基于观察的个性化占用模式的暖通空调时间表,发现与传统默认时间表相比,可以节省多达9%的能源。Mahdavi[3]指出了居住行为建模在基于居住的控制领域中的重要性。专注于居住行为建模和相关节能的研究已应用于建筑的不同领域,如空调[4]、通风[5]和照明[6]。结果表明,使用占用率传感器控制照明可实现30%的典型节能[7]。在一个开放的办公室里,通过使用占用控制[8],使未占用区的温控器设置高于占用区的温控器,可以实现30%的制冷能耗降低。

随着人们对室内环境质量的关注,建筑物的健康和生产率问题越来越受到人们的重视。乘员在室内环境中产生热量和CO2,也会影响室内环境,如CO2浓度、车门状态、光照水平、二进制运动binary motion和温度[2]。

1.2.占用数量和模式是建筑模拟工具的基础和关键输入Occupancy numbers and patterns are the basis and key input of building simulation tools

此外,占用数量和模式是建筑模拟工具的基础和关键输入,如Energy Plus[9]、ESPr[10]、DeST[11,12]和TRNSYS[13]。这些模拟工具能够生成冷却、加热、照明系统等的能耗曲线。因此,它们有助于系统或整个建筑的能源性能分析。如果可以使用准确的居住动态作为输入,则可以实现对建筑能耗的准确预测[14–17]。Yang和BecerikGerber[2]评估了通过三种方法获得的个性化入住情况:时间序列建模、模式识别建模和随机过程建模。结果表明,实施三种个性化占用模式对能源模拟结果的影响优于固定设计模式。

此外,许多研究都关注高能耗以及实际能耗与预测值的差异。研究[1]发现,大学校园建筑的实际消耗量比预测值高出约85%。Staats等人[18]和Webber等人[19]的研究表明,超过50%的建筑总能耗是在非工作时间消耗的,主要是由于额外占用或占用行为。Meier[20]表明了类似的发现,由于额外的设备和更长的照明时间,会产生更高的能耗,并且可以通过改变占用行为来降低能耗。Masoso和Grobler[21]进一步支持上述发现。

然而,居住者的行为因个人而异。科威特住宅[22]的室内空气恒温器设定点从低于19℃到高于25℃不等,这导致了不同情况下的冷负荷消耗。Hong和Lin[23]模拟了一个典型的单人办公室。他们发现,与标准或典型的工作方式相比,浪费的工作方式消耗的能量高达90%。对南非六座随机选取的商业建筑进行的能源审计研究[21]发现,一半以上的能源是在非工作时间使用的,而不是在工作时间使用的,大约19–28%的建筑能源是在周末的空闲时间使用的。Zhao等人[24]的研究结果还表明,该特定办公室的“原型”工作日入住计划与实际学习计划之间存在36.67–50.53%的差异,这导致实际能耗与模拟能耗之间存在差异。

2.乘员数量和模式确定Occupant number and pattern determination

用于收集入住信息的最基本和最简单的方法是问卷调查,以及与主要管理人员的访谈,重点是绘制日常客房活动和入住模式。问卷调查[25]发现,92%的建筑物使用者是游客,这表明建筑物的入住率变化的可能性很大。Aerts等人[26]使用时间使用调查(TUS)和家庭预算调查(HBS)[27]的数据来获得综合调查的入住率数据。记录入住期间的活动和移动情况,说明他们是否在家或是否有人陪同。然而,这种调查和观测方法需要耗费大量的人力和时间进行收集,并且可能无法准确反映实际的居住模式。

用于计算和定位室内空间占用率的另一种方法是占用率传感器。这些方法可分为两类。第一组使用基于射频(RF)信号的技术,该技术是在电磁信号检测的基础上开发的[28]。典型的射频系统由天线、收发器和转发器组成。射频位置传感可应用于主动或被动模式。在主动定位模式下,天线安装在目标位置[29]。通过向周围空间提供无源射频标签,然后根据参考标签坐标计算物体坐标[30]。然而,这个过程的应用必须与大量的参考标签结合使用。因此,当目标距离标签太远或目标周围的参考标签数量不足时,错误可能会增加。尽管有上述技术,无源模式(目标位置将安装有源射频标签[31])可以是另一种选择。许多研究已经将RF(包括雷达[32]、SpotON[33]、LANDMARC[34]和Ekahau[35]应用于居住计数和位置研究。Li等人[36]还开发了一种基于RFID的居住监控系统,Lio等人[37]还提出了一种基于代理的方法,该方法具有建筑物居住的图形建模功能。然而,这些方法可能会受到室内电磁条件的显著影响。

第三组是基于红外[38]、超声波或摄像机的信息,由于环境变化,精确度也可能不稳定[39]。这些占用传感器检测其覆盖区域内的活动,并返回指示占用状态的控制信号。该组传感器安装在目标建筑物/房间的主入口,并已应用于许多研究中。Gul和Patidar[25]最近的一项研究是基于双向红外光束来计算进出大楼的人数。通过在入口处设置两道平行红外光束的无形屏障,可以通过中断的次数来计算进出人数。Wang等人[40]采用占用日志对大型办公楼的35个单人办公室进行了研究。在每个办公室的菲涅耳透镜后面放置一个红外传感器,当房间空置且传感器检测到运动时,将接收到“从空置到占用”的信号;当15分钟的平均间隔内没有运动时,将接收到事件“从占用到空闲”的信号。研究还采用了建筑安全摄像头、门口电子计数传感器来报告教育建筑中的居住多样性因素[41]。Duarte等人[42]通过使用629个预先安装在天花板上的被动红外占用传感器,揭示了11层办公楼的占用模式。本研究中传感器的覆盖区域直径约为24英尺,视线为360°。传感器不计算人数,但报告状态的变化,设计用于根据特定建筑的预定时间延迟控制照明设备。

长期以来,二氧化碳(CO2)传感器一直用于估计空间中的乘员数量[43,44]。如前所述,占用率是CO2发生器,可通过CO2浓度水平推断占用率。然而,已经报告了诸如车窗或车门位置、室外空气供给率以及乘员与传感器的距离等限制。估算误差的不确定性,以及第二,CO2传感器响应的延迟(即时间延迟方面)也是将CO2传感器应用于占用人数计算时的限制的一部分[45]。

Wang等人[46]找到了一个合适的算法,将排气中的CO2水平作为输入。在实施了三种基于CO2水平的直接方法后,结果显示了较高的准确性。类似的研究也出现在Mumma的研究中[47],测量了房间中排气中的CO2水平,结果显示快速估计,准确度为±2人。

全球定位系统(GPS)、蜂窝数据、无线局域网(WLAN)和蓝牙等信息技术的最新发展也应用于占用检测和计数研究[39,48–50]。一个相对较新的选项是GPS定位和Wi-Fi连接[51],它适用于具有多个重叠接入点的建筑物,作为连接的参考系统。但是,由于建筑规模大,机构建筑占用率高,Wi-Fi连接总数可能不准确。此外,有些令人惊讶的是,Hailemariam等人[44]报告说,除了运动传感器之外,其他传感器类型的加入并没有提高总体占用检测精度,这表明从不同传感器类型传播的错误可能会破坏占用检测的精度。

作为总结,表1列出了上述技术的主要优点和缺点。
在这里插入图片描述
在这里插入图片描述

3.居住者行为的随机性和居住人数的可变性Stochastic nature of occupant behavior and variability of occupancy numbers

由于建筑物的能耗与居住者的行为高度相关[52,53],因此我们如何节约能源应从观察居住者的行为开始。当进入或离开空间时,乘员打开或关闭灯或其他装置的方式;乘员打开车窗/车门的方式;这是复杂行为的结果,强烈依赖于乘员的年龄、性别、责任和其他因素。从这个角度来看,乘员行为被表示为在空间内执行动作的概率,这是一组随机变量,代表某个随机值系统在一段时间内的演化。Chang和Hong[54]证明,占用率分布的随机性是导致建筑物中测量和模拟能耗数据之间存在差异的因素之一。

与居住者行为的随机性不同,空间中的人数也是一个很重要的特征。先前的研究发现,入住人数变化很大。2013年,Duarte等人[42]对一座大型商业办公楼进行了一项研究,发现与ASHRAE标准90.1-2004中的标准化入住时间表相比,一天中的时间、一周中的某一天、节假日和月份的入住模式变化高达46%。问卷调查[25]表明,92%的建筑物使用者是访客,而只有8%的居住者在建筑物内作为工作人员工作。另一项研究[41]表明,在一小时内进入和离开建筑物的人数与建筑物的最大占用率相同。研究[52]表明,每小时的入住率有高达60%的显著变化,尤其是在早上8点到下午5点的办公室到达或离开时间。

由于建筑物的入住率在时间和空间上都是随机的,因此入住率对室内环境和建筑能耗的影响将变得非常难以预测。实际占用情况与任何模拟或建模占用情况之间存在差异。这部分是因为在发生特殊事件时,无法考虑占用情况的极端条件及其对建筑能耗或室内环境的影响,部分是因为将空间的峰值负荷高估为假定的最大占用率。

4.占用模型Occupancy models

开发准确的入住动态模型非常重要,因为它可以预测入住动态以及入住模式与能耗之间的关系,从而实现对建筑能耗的准确预测[15,16,55]。鉴于上述对占用人数和占用行为的高度可变性和不确定性的讨论,由于人类行为的随机性,开发可靠的占用人存在数学模型是一项挑战[56]。

概率模型,使用统计数据预测特定行为发生的概率,是探索基于随机代理的模型来研究建筑物占用率的一种选择。随机过程将居住状态视为一个随机变量;在每个时间点,它根据以前的状态确定概率。然而,存在状态也可能受到非确定性因素的影响。因此,即使在相同的初始条件下,也可能实现具有不同可能性的不同方向。马尔科夫模型是应用最多的基于随机代理的模型之一。研究报告,马尔可夫模型检测入住人数的平均准确率为73%[57]。Erickson和Cerpa[58]将房间视为马尔可夫状态,并将房间内的运动视为过渡,以预测人的行为[59]。Bourgeois等人[14]和Page等人[60]也应用马尔可夫模型来模拟一段时间内居住者的行为。Page[61]考虑了时间异质马尔科夫链下的布尔占用(占用或空置),以产生模拟输入的现实数据[61]。Dong和Lam[62]使用了半马尔可夫模型,以便将多个传感器流合并到乘员计数估计中。Sun等人[63]还开发了一个随机模型,使用二项式分布表示加班的总人数,指数分布i表示一段时间内的持续时间。Wang等人[64]应用一阶齐次马尔可夫链技术,作为一种广泛应用的成熟随机过程方法,对乘员移动过程进行建模。他们认为居住是建筑物内部和外部空间运动的直接结果。

Stoppel和Leite[65]也采用概率占用模型来模拟年度建筑占用率。根据他们的研究,居住者长期空置活动的频率、持续时间和季节性可作为建筑模拟模型的输入。Yang和Becerik Gerber[2]尝试了随机过程建模以及回归建模、时间序列建模和模式识别建模,以对预期占用状态进行建模,并根据统计接近实际占用的程度对其性能进行了比较。

正如大多数研究人员研究概率模型一样,Mahdavi和Tahmasebi[66]开发了一个简单的非概率模型,称为MT模型。该模型根据聚集的过去存在数据生成每日二进制占用率配置文件。首先,通过统计聚集的过去存在数据的每日概率分布引入起点。对于要生成的每日简档的每个时间间隔,如果聚合的过去简档的相关存在概率不小于特定阈值概率,则假设该间隔被占用。否则,对每日概要的时间间隔采用空假设。一些研究人员还使用了其他模型,如支持向量机(SVM)和神经网络(NN)。Vapnik[67]开发的支持向量机已广泛应用于随机数据集的分类、预测和回归;而人工神经网络(ANN)是一组相互连接的人工神经元,它使用一个数学或计算模型来处理基于连接方法的信息。Dong等人[57]研究了ANN、NN和隐马尔可夫方法在占用检测中的应用。结果表明,马尔可夫方法可以达到与神经网络方法相似的精度。Lin等人[68]通过检测头部轮廓的特征区域来估计人群中的居住密度,然后通过支持向量机(SVM)方法对这些区域进行分类。

根据研究所关注的空间层次,居住模式可分为两类:

  1. 建筑层的居住人数The number of occupants in building level。Aerts等人[26]通过分析一般居住模式并研究行为和社会经济特征之间的关系,得出了三种状态的居住模式。这三种占用概率模型使用统计数据预测特定行为的概率。它旨在结合现有模型中的强大元素,并能够根据不同的代表性入住模式对模型进行校准。
  2. 空间层中的居住人数The number of occupants in space level。有了入住人数的详细信息,可以实施进一步的控制系统。需求控制通风系统就是一个例子,它要求尽可能详细地确定乘客数量,以确定需求和操作。

在[69]中,根据运动传感器数据,采用遗传编程算法来学习单人办公室中居住者的行为。在[40]中,假设单人办公室的占用和空置间隔呈指数分布,因此使用从35间单人办公室收集的运动传感器数据来验证该假设。结果表明,空置间隔的假设得到了验证,但占用间隔的假设没有得到验证。佩奇的模型[61]还着重于对空间中居住者的数量进行建模。在该模型中,假设每个乘员的存在是独立的,并且乘员存在的概率仅取决于在前一时间步是否有乘员存在。

Liao和Barooah[56]以及Liao等人[37]尝试使用基于复杂随机代理的模型,通过融合传感器fuse sensor数据,对占用率进行建模,以估计办公室中的人数。Wang等人[64]能够使用马尔可夫链方法生成每个居住者的位置和建筑物每个区域的居住情况。McKenna等人[70]也采用了相同的一阶马尔可夫链技术,其中开发了住宅建筑的四状态占用模型。在该模型中,缺席/当前状态以及活动/非活动状态被分别处理,从而在睡眠和缺席之间进行了区分,从而为需求控制和建模提供了改进的基础。此外,使用一阶马尔可夫链技术生成随机占用数据。通过此模型,最多可区分6名乘客,并可将周末与工作日区分开来。

对于空间层次上更详细的占用率建模,有单占用单区域场景、多占用单区域场景和多占用多区域场景。

Wang等人[40]提出了一个具有两个指数分布的非齐次泊松过程模型,模拟了单人办公室中居住者的行为。然后用这两个指数分布来描述空位和占位的分布区间。[61]的研究也考虑了单占用单区域的情况。然而,将该模型应用于多区域情况并非易事。Chen等人[17]利用两种新的非齐次马尔可夫链模型研究了多人单区和多人多区场景。结果表明,在多人单区域场景中,他们研究中提出的模型优于基于代理的模型。同时,考虑了多人多区域场景中区域间的相互作用。结果表明,所提出的齐次马尔可夫链模型在多人多区域场景中对每个区域都有很好的性能。

虽然不同的模型具有合理的精度,但将其应用于机构建筑占用率预测时可能有不同的优缺点。表2列出了考虑机构建筑应用时模型的优缺点。
在这里插入图片描述
在这里插入图片描述

5.结论Conclusion

综上所述,机构建筑的占用特点如下:

(1)占用人数规模大:考虑到演讲厅、会议室、工作室等机构建筑的多种功能,机构建筑中的占用人数较大,密度相对较高[80]。
(2)入住人数的高变化:以往的研究发现入住人数的高变化来自两点。首先,空间中人数的可能性是一个随时间变化的随机变量集合。其次,在一个空间中的人数也是一个不简单的方面,在时间和空间方面都要加以描述。
(3)居住者的变化模式:机构建筑内的活动(讲座、工作室等)通常基于每周提前计划,这意味着从周一到周五,每周的居住率变化趋势应该相似。
(4)不了解能源消耗法案:机构建筑的居住者不负责支付能源法案。在考虑能源使用模式时,这一点至关重要,因为账单支付活动可能会向入住者提供反馈和意识,从而有可能改变能源使用水平。

前面的章节还广泛强调了入住率及其在建筑能耗、建筑性能模拟和建筑控制中的行为的重要性[73–76]。因此,在谈论建筑节能时,涉及人为因素的组织能源管理政策/法规领域将变得非常重要[1,71,77,78]。Nguyen Andiello[72]发现,建筑物内的居住情况和行为对空间供暖、制冷和通风需求、照明和空间设备的能耗以及建筑物控制有很大影响。他们得出的结论是,与能源使用相关的粗心行为可以增加建筑设计能源性能的三分之一,而节能行为可以节省三分之一。然而,如果没有好的数据来进行管理和投资决策,就不可能减少能源使用[79]。这种针对节能潜力的管理和投资决策需要很好地了解居住人数数据以及居住者的能源使用高度。虽然已经从占用检测、计算和建模方面做了大量工作,但这些占用检测方法存在一些局限性,如时间延迟、成本高等。一种更简单、更准确的方法是未来研究的目标。

此外,在机构建筑的入住率传感和入住率监测应用中,高入住率、高入住率变化以及建筑功能将对一些技术和方法提出挑战。尽管通过审查工作确定了利弊,似乎没有一个传感器或模型可以最好地安装到所有机构建筑中。通过未来的研究工作,应该期望有更简化和易于应用的方法。

致谢Acknowledgement

该项目由新加坡国立大学在CiBEST (BEE Hub)资助。

参考文献References

[1] E. Azar, C.C. Menassa, Agent-based modeling of occupants “impact on energy use in commercial buildings”, J. Comput. Civil Eng. ASCE 26 (4) (2012) 506.
[2] Z. Yang, B. Becerik-Gerber, The coupled effects of personalized occupancy pro-file based HVAC schedules and room reassignment on building energy use, Energy Build. 78 (2014) 113–122.
[3] A. Mahdavi, People in building performance simulation, in: J.L.M. Hensen, R. Lamberts (Eds.), Building Performance Simulation for Design and Operation, Spon Press, 2011, ISBN 978-0-415-47414-6.
[4] V.L. Erickson, M.A. Carreira-Perpinan, A.E. Cerpa, OBSERVE: occupancy-based system for efficient reduction of HVAC energy, in: IEEE 10th International Conference on Information Processing in Sensor Networks (IPSN), 2011, pp. 258–269.
[5] T. Leephakpreeda, R. Thitipatanapong, T. Grittiyachot, V. Yungchareon, Occupancy-based control of indoor air ventilation: a theoretical and experimental study, Sci. Asia 27 (4) (2001) 279–284.
[6] X. Guo, D.K. Tiller, G.P. Henze, C.E. Waters, The performance of occupancy-based lighting control systems: a review, Light. Res. Technol. 42 (4) (2010) 415–431.
[7] S. Pigg, M. Eilers, J. Reed, Behavioral aspects of lighting and occupancy sensors in private offices: a case study of a university office building, in: Proceedings of the 1996 ACEEE Summer Study on Energy Efficiency in Buildings, vol. 8, 1996, pp. 161–170.
[8] L.J. Lo, A. Novoselac, Localized air-conditioning with occupancy control in an open office, Energy Build. 42 (7) (2010) 1120–1128.
[9] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. Pedersen, R.K. Strand, R.J. Liesen, D.E. Fisher, M.J. Witte, et al., Energyplus: creating a new-generation building energy simulation program, Energy Build. 33 (4) (2001) 319–331.
[10] ESRU, ESP-r: a building and plant energy simulation environment, User Guide Version 9 Series, University of Strathclyde, Glasgow, 2000.
[11] D. Yan, J. Xia, W. Tang, F. Song, X. Zhang, Y. Jiang, Destan integrated building simulation toolkit. Part I: Fundamentals Building Simulation, vol. 1, Springer, 2008, pp. 95–110.
[12] X. Zhang, J. Xia, Z. Jiang, J. Huang, R. Qin, Y. Zhang, Y. Liu, Y. Jiang, Destan integrated building simulation toolkit. Part II: Applications Building Simulation, vol. 1, Springer, 2008, pp. 193–209.
[13] S. Klein, W. Beckman, J. Mitchell, J. Due, N. Due, T. Freeman, J. Mitchell, J. Braun, B. Evans, J. Kummer, et al., Trnsys 16 – A Transient System Simulation Program. User manual, Solar Energy Laboratory, University of Wisconsin-Madison, Madison, 2004.
[14] D. Bourgeois, C. Reinhart, I. Macdonald, Adding advanced behavioural models in whole building energy simulation: a study on the total energy impact of manual and automated lighting control, Energy Build. 38 (2006) 814–823.
[15] S.S. Kwok, E.W. Lee, A study of the importance of occupancy to building cooling load in prediction by intelligent approach, Energy Convers. Manage. 52 (7) (2011) 2555–2564.
[16] S.S. Kwok, R.K. Yuen, E.W. Lee, An intelligent approach to assessing the effect of building occupancy on building cooling load prediction, Build. Environ. 46 (8) (2011) 1681–1690.
[17] Z. Chen, J. Xu, C. Yeng, Modeling regular occupancy in commercial buildings using stochastic models, Energy Build. (2015), http://dx.doi.org/10.1016/j. enbuild.2015.06.009.
[18] H. Staats, E. van Leeuwen, A. Wit, A longitudinal study of informational interventions to save energy in an office building, J. Appl. Behav. Anal. 33 (2000) 101–104.
[19] C.A. Webber, J.A. Roberson, M.C. McWhinney, R.E. Brown, M.J. Pinckard, After-hours power status of office equipment in the USA, Energy 31 (2006) 2823–2838.
[20] A. Meier, Operating buildings during temporary electricity shortages, Energy Build. 38 (2006) 1296–1301.
[21] O.T. Masoso, L.J. Grobler, The dark side of occupants’ behaviour on building energy use, Energy Build. 42 (2010) 173–177.
[22] A. Al-Mumin, O. Khattab, G. Sridhar, Occupants’ behavior and activity patterns influencing the energy consumption in the Kuwaiti residences, Energy Build. 35 (6) (2003) 549–559.
[23] T. Hong, G. Lin, Occupant behavior: impact on energy use of private offices, in: Proceedings of Asim IBSPA Asia Conference, 2012.
[24] J. Zhao, B. Lasternas, K.P. Lam, R. Yun, V. Loftness, Occupant behavior and schedule modeling for building energy simulation through office appliance power consumption data mining, Energy Build. 82 (2014) 341–355.
[25] M.S. Gul, S. Patidar, Understanding the energy consumption and occupancy of a multi-purpose academic building, Energy Build. 87 (2015) 155–165.
[26] D. Aerts, J. Minnen, I. Glorieux, I. Wouters, F. Descamps, A method for the identification and modelling of realistic domestic occupancy sequences for building energy demand simulations and peer comparison, Build. Environ. 75 (2014) 67–78.
[27] I. Glorieux, J. Minnen, Website Belgisch tijdsbudgetonderzoek, 2008, Available from: www.time-use.be.
[28] K. Domdouzis, B. Kumar, C. Anumba, Radio-frequency identification (RFID) applications: a brief introduction, Adv. Eng. Inf. 21 (4) (2007) 350–355.
[29] R. Want, A. Hopper, V. Falcao, J. Gibbons, The active badge location system, ACM Trans. Inf. Syst. 10 (1) (1992) 91–102.
[30] R. Tesoriero, R. Tebar, J.A. Gallud, M.D. Lozano, V.M.R. Penichet, Improving location awareness in indoor spaces using RFID technology, Expert Syst. Appl. 37 (1) (2010) 894–898.
[31] W. Gueaieb, M.S. Miah, An intelligent mobile robot navigation technique using RFID technology, IEEE Trans. Instrum. Meas. 57 (9) (2008) 1908–1917.
[32] P. Bahl, V.N. Padmanabham, Radar: an in-building rf-based user location and tracking system, in: Proceedings of the IEEE INFOCOM 2000, Tel Aviv, Israel, vol. 2, March, 2000, pp. 775–784.
[33] J. Hightower, R. Want, G. Borriello, SpotON: An Indoor 3d Location Sensing Technology Based on RF Signal Strength, UW CSE 2000-02-02, Univ. Washington, Seattle, 2000.
[34] L.M. Ni, Y. Liu, Y.C. Lau, A.P. Patil, Landmarc: indoor location sensing using active rfid, Wirel. Netw. 10 (2004) 701–710.
[35] Ekahau, Inc., Ekahau Positioning Engine 2.0. Available from: http://www. ekahau.com.
[36] N. Li, G. Calis, B. Becerik-Gerber, Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations, Autom. Construct. 24 (2012) 89–99.
[37] C. Liao, Y. Lin, P. Barooah, Agent-based and graphical modelling of building occupancy, J. Build. Perform. Simul. 5 (1) (2012) 5–25.
[38] F. Wahl, M. Milenkovic, O. Amft, A green autonomous self-sustaining sensor node for counting people in office environments, in: EDERC 2012: 5th European DSP Education and Research Conference, IEEE, 2012.
[39] Y. Gu, A. Lo, I. Niemegeers, A survey of indoor positioning systems for wireless personal networks, IEEE Commun. Surv. Tutor. 11 (2009) 13–32.
[40] D. Wang, C. Federspiel, F. Rubinstein, Modeling occupancy in single person offices, Energ Build. 37 (2) (2005) 121–126.
[41] J.A. Davis III, D.W. Nutter, Occupancy diversity factors for common university building types, Energy Build. 42 (9) (2010) 1543–1551.
[42] C. Duartea, K. Van Den Wymelenberga, C. Riegerb, Revealing occupancy patterns in an office building through the use of occupancy sensor data, Energy Build. 67 (2013) 587–595.
[43] C.C. Federspiel, Estimating the inputs of gas transport processes in buildings, IEEE Trans. Control Syst. Technol. 5 (1997) 480–489.
[44] E. Hailemariam, R. Goldstein, R. Attar, A. Khan, Real-time occupancy detection using decision trees with multiple sensor types, in: Presented at the Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design, Boston, Massachusetts, 2011.
[45] S. Meyn, A. Surana, Y. Lin, S.M. Oggianu, S. Narayanan, T.A. Frewen, A sensor-utility-network method for estimation of occupancy in buildings, in: Proceedings of the 48th IEEE Conference on Decision and Control Held, Jointly with the 2009 28th Chinese Control Conference, IEEE, Shanghai, 2009, pp. 1494–1500.
[46] S. Wang, J. Burnett, H. Chong, Experimental validation of CO2-based occupancy detection for demand controlled ventilation, Indoor Built Environ. (8) (1999) 377–391.
[47] S.A. Mumma, Transient occupancy ventilation by monitoring CO2, in: ASHRAE IAQ Applications, 2004, pp. 21–23.
[48] H. Liu, H. Darabi, P. Banerjee, J. Liu, Survey of wireless indoor positioning techniques and systems, IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 37 (6) (2007) 1067–1080.
[49] J. Hallberg, M. Nilsson, K. Synnes, Positioning with Bluetooth, in: 10th International Conference on Telecommunications, ICT 2003, 952, 2003, pp. 954–958.
[50] J. Hallberg, C. Nugent, R. Davies, M. Donnelly, Localisation of forgotten items using RFID technology Information Technology and Applications in Biomedicine, in: ITAB 2009. 9th International Conference on IEEE, 2009.
[51] Y. Zhao, W. Zeiler, G. Boxem, T. Labeodan, Virtual occupancy sensors for real-time occupancy information in buildings, Build. Environ. 93 (2015) 9–20.
[52] S. D’Oca, T. Hong, Occupancy schedules learning process through a data mining framework, Energy Build. 88 (2015) 395–408.
[53] B. Dong, K.P. Lam, Building energy and comfort management through occupant behaviour pattern detection based on a large-scale environmental sensor network, J. Build. Perform. Simul. 4 (4) (2011) 359–369.
[54] W. Chang, T. Hong, Statistical analysis and modeling of occupancy patterns in open-plan offices using measured lighting-switch data, Build. Simul. 6 (2013) 23–32.
[55] G.R. Newsham, B.J. Birt, Building-level occupancy data to improve arima-based electricity use forecasts, in: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-efficiency in Building, ACM, 2010, pp. 13–18.
[56] C. Liao, P. Barooah, An integrated approach to occupancy modeling and estimation in commercial buildings, in: Proc. of the American Control Conference, 2010, pp. 3130–3135.
[57] B. Dong, B. Andrews, K.P. Lam, M. Hoynck, ¨ R. Zhang, Y. Chiou, D. Benitez, An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network, Energy Build. 42 (2010) 1038–1046.
[58] V.L. Erickson, A.E. Cerpa, Occupancy based demand response HVAC control strategy, in: Proceedings of the Second ACM Workshop on Embedded Sensing Systems for Energy-efficiency in Buildings, ACM, Zürich, 2010, pp. 7–12.
[59] M. Pinsky, S. Karlin, An Introduction to Stochastic Modeling, Academic press, 2010.
[60] J. Page, N. Morel, D. Robinson, J.-L. Scartezzini, Simulating stochastic demand of resources in an urban neighbourhood, in: CISBAT 2005, Lausanne, Switzerland, 2005, pp. 509–513.
[61] J. Page, D. Robinson, N. Morel, J.-L. Scartezzini, A generalised stochastic model for the simulation of occupant presence, Energy Build. 40 (2) (2008) 83–98.
[62] B. Dong, K.P. Lam, A real-time model predictive control for building heating and cooling systems based on the occupancy behavior pattern detection and local weather forecasting Building Simulation, vol. 7, Springer, 2014, pp. 89–106.
[63] k. Sun, D. Yana, T. Hong, S. Guo, Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration, Build. Environ. 79 (2014) 1–12.
[64] C. Wang, D. Yan, Y. Jiang, A novel approach for building occupancy simulation Building Simulation, vol. 4, Springer, 2011, pp. 149–167.
[65] C.M. Stoppel, F. Leite, Integrating probabilistic methods for describing occupant presence with building energy simulation models, Energy Build. 68 (2014) 99–107.
[66] A. Mahdavi, F. Tahmasebi, Predicting people’s presence in buildings: an empirically based model performance analysis, Energy Build. 86 (2015) 349–355.
[67] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.
[68] S.F. Lin, J.Y. Chen, H.X. Chao, Estimation of number of people in crowded scenes using perspective transformation, IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 31 (6) (2001) 645–654.
[69] T. Yu, Modeling occupancy behavior for energy efficiency and occupants comfort management in intelligent buildings, in: Proc. of the 9th International Conference on Machine Learning and Applications (ICMLA), 2010, pp. 726–731.
[70] E. McKenna, M. Krawczynski, M. Thomson, Four-state domestic building occupancy model for energy demand simulations, Energy Build. 96 (2015) 30–39.
[71] T. Zhang, P. Siebers, U. Aickelin, Modelling electricity consumption in office buildings: an agent based approach, Energy Build. 43 (2011) 2882–2892.
[72] T.A. Nguyen, M. Aiello, Energy intelligent buildings based on user activity: a survey, Energy Build. 56 (2013) 244–257.
[73] F. Oldewurtel, D. Sturzenegger, M. Morari, Importance of occupancy information for building climate control, Appl. Energy 101 (2013) 521–532.
[74] L.O. Degelman, A model for simulation of daylighting and occupancy sensors as an energy control strategy for office buildings, in: Proceedings of Building Simulation’99, An IBPSA Conference, Kyoto, 1999, pp. 571–578.
[75] J.R. Dobbs, B.M. Hencey, Model predictive HVAC control with online occupancy model, Energy Build. 82 (2014) 675–684.
[76] A. Mahdavi, Patterns and implications of user control actions in buildings, Indoor Built Environ. 18 (5) (2009) 440–446.
[77] L. Atallah, M. ElHelw, J. Pansiot, D. Stoyanov, L. Wang, B. Lo, G.-Z. Yang, Behaviour profiling with ambient and wearable sensing, in: 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), 2007, pp. 133–138.
[78] X. Feng, D. Yan, T. Hong, Simulation of occupancy in buildings, Energy Build. 87 (2015) 348–359.
[79] Green Building Council, Carbon Reductions in Existing Non-domestic Buildings, UK Green Building Council, London, 2011.
[80] J. Yang, M. Santamouris, S.E. Lee, C. Deb, Energy performance model development and occupancy number identification of institutional buildings, Energy Build. (2016), http://dx.doi.org/10.1016/j.enbuild.2015.12.018.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像的目标属于哪个类别。 定位问题:确定目标在图像的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像的目标属于哪个类别。 定位问题:确定目标在图像的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值