本企业培训是TsingtaoAI技术团队专们为某商业银行分行IT团队开发的LLM大模型技术课程。课程深入分析大模型在金融行业中的发展趋势、底层技术及应用场景,重点提升学员在大模型应用中的实际操作能力与业务场景适应力。通过对全球商用 LLM 产品及国内外技术生态的深度对比,学员将了解大模型在不同企业中的发展路径,掌握如 GPT 系列、Claude 系列、文心一言等大模型的前沿技术。针对金融行业的业务需求,学员将学会如何结合多模态技术改进用户体验、数据分析等服务流程,并掌握大模型训练与工具链的实操技术,尤其是模型的微调、迁移学习与压缩技术。课程将帮助学员提升 Prompt 工程设计及调优能力,解决在智能客服、风险评估、合规审查等场景中的实际问题,同时通过真实案例和项目实践,学员将具备在金融场景中进行 LLM 部署与优化的能力,实现业务流程的智能化与自动化。
培训对象
- 产品经理
- 研发工程师
- 算法工程师
培训时长及形式
2天,每天6小时,一共12小时。线上或线下培训均可支持。
课程大纲
第一部分:大模型发展方向与金融行业的应用趋势
- 大模型概述与发展方向
- 全球商用 LLM 发展现状
- 对比 OpenAI、Anthropic、Google DeepMind 等企业最新发布的 LLM 产品。
- OpenAI GPT 系列(GPT-4、GPT-4 Turbo、GPT-5 预期发展)与 Claude 系列(Claude 3)的比较与发展方向。
- Google DeepMind Gemini 系列大模型的发展趋势。
- 国内外大模型生态圈的差异与发展路径:重点分析国内如百度文心一言、阿里通义千问等商用大模型的技术演进与实践。
- 多模态大模型的兴起
- DALLE3、Suno、Sora、GPT-4V 等多模态大模型的应用场景及技术创新。
- 如何结合多模态技术改进金融服务中的用户体验、数据分析、以及金融产品设计。
- 大模型的最新技术突破与研究前沿
- 面向未来的大模型技术挑战:推理能力优化、能耗控制与计算成本问题。
- 当前前沿研究中的方向:例如 Self-supervised Learning 和 Multitask Learning 在大模型中的应用。
- 全球商用 LLM 发展现状
- LLM 在金融行业的场景化应用趋势
- 金融领域的 AI 应用场景概览
- 基于 LLM 的智能客服、风险评估、欺诈检测、合规审查等金融场景中的应用。
- 如何结合分行和总行的金融业务模式进行大模型 AI 的定制开发与落地。
- 国内外领先银行的 LLM 实践
- 通过案例剖析国内外领先大型银行如何应用 LLM 优化业务流程。
- 不同金融机构如何通过大模型提升精准营销、投资分析、贷款风险评估等具体场景的效率。
- 金融领域的 AI 应用场景概览
第二部分:大模型的底层技术与模型训练
- 大模型的技术原理与架构设计
- LLM 架构与传统 NLP 技术的比较
-
<
- LLM 架构与传统 NLP 技术的比较