企业内训|LLM大模型技术在金融领域的应用及实践-某商业银行分行IT团队

本企业培训是TsingtaoAI技术团队专们为某商业银行分行IT团队开发的LLM大模型技术课程。课程深入分析大模型在金融行业中的发展趋势、底层技术及应用场景,重点提升学员在大模型应用中的实际操作能力与业务场景适应力。通过对全球商用 LLM 产品及国内外技术生态的深度对比,学员将了解大模型在不同企业中的发展路径,掌握如 GPT 系列、Claude 系列、文心一言等大模型的前沿技术。针对金融行业的业务需求,学员将学会如何结合多模态技术改进用户体验、数据分析等服务流程,并掌握大模型训练与工具链的实操技术,尤其是模型的微调、迁移学习与压缩技术。课程将帮助学员提升 Prompt 工程设计及调优能力,解决在智能客服、风险评估、合规审查等场景中的实际问题,同时通过真实案例和项目实践,学员将具备在金融场景中进行 LLM 部署与优化的能力,实现业务流程的智能化与自动化。

培训对象
  • 产品经理
  • 研发工程师
  • 算法工程师
培训时长及形式

2天,每天6小时,一共12小时。线上或线下培训均可支持。

课程大纲

第一部分:大模型发展方向与金融行业的应用趋势
  1. 大模型概述与发展方向
    1. 全球商用 LLM 发展现状
      1. 对比 OpenAI、Anthropic、Google DeepMind 等企业最新发布的 LLM 产品。
      2. OpenAI GPT 系列(GPT-4、GPT-4 Turbo、GPT-5 预期发展)与 Claude 系列(Claude 3)的比较与发展方向。
      3. Google DeepMind Gemini 系列大模型的发展趋势。
      4. 国内外大模型生态圈的差异与发展路径:重点分析国内如百度文心一言、阿里通义千问等商用大模型的技术演进与实践。
    2. 多模态大模型的兴起
      1. DALLE3、Suno、Sora、GPT-4V 等多模态大模型的应用场景及技术创新。
      2. 如何结合多模态技术改进金融服务中的用户体验、数据分析、以及金融产品设计。
    3. 大模型的最新技术突破与研究前沿
      1. 面向未来的大模型技术挑战:推理能力优化、能耗控制与计算成本问题。
      2. 当前前沿研究中的方向:例如 Self-supervised Learning 和 Multitask Learning 在大模型中的应用。
  2. LLM 在金融行业的场景化应用趋势
    1. 金融领域的 AI 应用场景概览
      1. 基于 LLM 的智能客服、风险评估、欺诈检测、合规审查等金融场景中的应用。
      2. 如何结合分行和总行的金融业务模式进行大模型 AI 的定制开发与落地。
    2. 国内外领先银行的 LLM 实践
      1. 通过案例剖析国内外领先大型银行如何应用 LLM 优化业务流程。
      2. 不同金融机构如何通过大模型提升精准营销、投资分析、贷款风险评估等具体场景的效率。
第二部分:大模型的底层技术与模型训练
  1. 大模型的技术原理与架构设计
    1. LLM 架构与传统 NLP 技术的比较
        <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TsingtaoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值