课程概述
此企业内训课程“Nvidia智算中心的深度技术研修”专为某智算厂商研发中心设计,内容涵盖了从基础设施构建到高性能计算优化的全方位技术要点。课程为期七天,分模块详细讲解了NV算力资源的网络架构、存储优化、智算集群的建设与自动化管理、NCCL通信优化及分布式训练进阶等内容,结合大量实际案例,深入探讨各类技术在智算中心中的应用与最佳实践。通过该课程,学员将全面掌握高效构建和管理智算平台的技能,为企业的AI和大数据应用提供强有力的技术支持。
内训目标
掌握NV算力资源的网络架构与关键技术:了解Nvidia计算平台下的高性能网络解决方案,学习如何设计和优化NVLink、Infiniband等网络架构,提高网络流量管理与数据传输效率。
优化大模型的存储与计算性能:通过学习GPUDirectStorage等技术,掌握大模型训练和推理阶段的存储需求及优化策略,提升数据读写速度和存储系统性能。
高效建设智算集群:学习基于Nvidia GPU的集群硬件选型与设计原则,掌握从集群建设、配置到实施的全流程管理技能,确保高效的集群构建和运维。
实现集群的自动化部署与管理:通过掌握Ansible、Puppet等自动化工具,提升大规模集群环境下的部署与管理效率,确保集群的稳定性和可扩展性。
掌握NCCL集合通信优化与分布式训练技术:学习Nvidia NCCL通信库的优化方法及在分布式训练中的应用,提升模型训练效率和系统整体性能。
提升智算中心的整体性能和稳定性:通过测试方案与标准的学习,掌握智算中心软硬件性能测试、故障管理与优化技术,提高智算平台的稳定性和性能。
课程准备及说明
授课前1周,讲师会对授课需要的硬件资源和软件环境给出详细的说明和教程文档。学员根据环境要求和教程文档提前准备好相应的硬件资源和软件环境。
课时安排
一共7天,每天6-7小时。
课程大纲
第一天:NV基础设施关键技术
1.1NV算力资源的网络关键技术和解决方案
- NV算力资源的网络架构:
- 介绍基于Nvidia算力资源的网络架构,涵盖NvidiaMellanox的高性能网络解决方案。
- 详细分析Infiniband和以太网在NV算力集群中的应用,比较其在性能、扩展性和成本上的差异。
- 探讨网络流量管理与优化技术,分析网络拥塞管理的典型案例。
- 高效数据传输技术:
- NVLink和PCIe总线在高性能计算中的应用。
- 远程直接内存访问(RDMA)技术在提升网络传输效率中的作用。
- 结合典型案例,分析网络带宽瓶颈及解决方案。
1.2基于NV算力资源的网络组网设计
- 组网架构设计:
- 讨论基于Nvidia算力资源的多种网络组网架构,包括星型、树型、环形和混合架构。
- 基于实际案例讲解组网设计过程中的注意事项和最佳实践。
- 介绍高性能计算集群中拓扑结构设计的要点,特别是在大规模集群中的应用。
- 可扩展性与冗余设计:
- 分析如何在Nvidia算力环境中设计具有高扩展性和高可用性的网络架构。
- 讨论冗余设计在确保网络稳定性中的作用,结合案例进行分析。
1.3大模型全流程中存储的要求
- 大模型存储需求分析:
- 探讨大模型在训练和推理阶段的存储需求,包括数据集存储、模型参数存储和临时数据存储。
- 结合Nvidia的GPUDirectStorage技术,分析如何优化存储系统以满足大模型的需求。
- 存储架构规划与性能优化:
- 介绍高性能存储架构的设计要点,涵盖分布式存储系统、对象存储、文件系统的选择与配置。
- 结合实际案例,讲解存储系统在性能、扩展性、可靠性等方面的优化策略。
1.4基于NV算力存储容量和性能规划、基于NV算力存储解决方案
- 存储容量规划:
- 详细介绍如何根据大模型的规模和数据量,规划合理的存储容量,避免资源浪费和性能瓶颈。
- 分析Nvidia算力环境中常见的存储容量规划方法,结合案例进行详细解释。
- 存储性能优化:
- 讨论如何通过多级缓存、数据压缩和分片等技术手段,提升存储系统的整体性能。
- 结合Nvidia的存储解决方案,介绍如何优化I/O性能,确保数据的高效存取。
第二-三天:基于英伟达GPU建设的智算集群建设
2.1英伟达环境的万卡集群建设交付案例
- 集群硬件选型与规划:
- 介绍万卡集群建设中常用的硬件选型,包括NvidiaA100、H100GPU,Infiniband网络设备及高性能存储设备。
- 结合典型案例分析硬件选型对集群性能的影响。
- 集群建设流程:
- 详细讲解从需求分析、硬件选型、集群设计到实施的全过程。
- 结合实际项目案例,分析在集群建设中常见的问题及其解决方案。
2.2大规模IB参数网建设与自动化
- IB网络的设计与部署:
- 详细讲解Infiniband网络在大规模集群中的应用,包括拓扑设计、网络配置及性能优化。
- 结合案例分析如何在实际部署中优化IB网络的参数配置以提升网络性能。
- 自动化部署与管理:
- 介绍大规模IB网络的自动化部署工具和技术,包括Ansible、Puppet等配置管理工具的使用。
- 探讨如何通过自动化工具实现集群的高效管理与运维,结合实际案例讲解自动化管理的最佳实践。
2.3硬集、软集工作流程及注意事项
- 硬集与软集的概念与区别:
- 介绍硬集(硬件集群)与软集(软件集群)的基本概念及其应用场景。
- 结合实际案例分析在不同场景下选择硬集或软集的优势和挑战。