企业内训|高智能数据构建和多模态数据处理、Agent研发及AI测评技术内训-吉林省某汽车厂商

吉林省某汽车厂商为提升员工在AI大模型技术方面的知识和实践能力,举办本次为期8天的综合培训课程。本课程涵盖“高智能数据构建与智驾云多模态数据处理”、“AI Agent的研发”和“大模型测评”三大模块。通过系统梳理从非结构化数据的高效标注与融合,到LangChain等框架下Agent的链式调用与RAG技术落地的全过程,帮助学员深入理解大模型在感知、决策和场景适配中的核心价值。课程详细探讨自动驾驶多模态数据处理的全栈架构,包括摄像头、激光雷达、车载日志与高精地图等多源数据如何采集、标注、融合与持续迭代,并结合分布式训练与推理优化和场景长尾策略等关键议题。最终,学员不仅能掌握前沿的Agentic AI研发方法,还能利用成熟的测评体系有效评估并改进大模型的精度与稳定性,为一该企业集团自动驾驶技术的升级提供坚实支撑。TsingtaoAI团队全面负责本次培训课程的设计研发和培训落地。

部分授课课件

培训目标

系统掌握多模态构建:深入理解高智能数据构建与多模态处理的完整方法论,从需求分析到标注、评估与迭代,奠定自动驾驶多源数据管理的坚实基础。

强化大模型辅助能力:理解自动驾驶中大模型辅助标注与数据扩增策略,涵盖语义级图像生成、文本变体生成及主动学习循环,提升感知与决策的鲁棒性。

熟练构建AI Agent:熟练运用LangChain、RAG等框架构建AI Agent,掌握ReAct等核心模式与工具调用机制,并能适配企业内部数据。

掌握多智能体协作:学会在Python环境中封装外部API与数据库,将传感器API、ERP和知识库整合进Agent工作流,构建更高效的智能服务体系。

深度融合与性能优化:探究多模态数据在分布式训练与推理下的优化策略,熟悉Early/Intermediate/Late Fusion等方法,确保自动驾驶感知与预测的精确性。

建立测评体系:建立结构化大模型测评体系,涵盖通用与垂直领域基准、多轮对话测评及自动化与人工评估要点,保证模型可解释性与安全合规。

详细课程大纲

模块一:高智能数据构建与智驾云多模态数据处理(3天)

1、高智能数据构建的整体方法论及思路

  • 从业务需求到数据需求:全链路规划
    • 在自动驾驶项目中,高智能数据构建的典型流程:
      • 明确业务/功能/场景需求(如自动泊车、高速领航、城区辅助驾驶等);
      • 确定数据类型(摄像头、激光雷达、雷达、超声波、车载日志、地图信息、非结构化文本资料等);
      • 数据挖掘与筛选;
      • 数据处理与标注;
      • 数据校验与质量评估;
      • 数据持续迭代与增量更新。
    • 如何将业务逻辑映射到数据结构化需求,特别是涉及自动驾驶功能时对多模态数据的依赖和分层处理方案。
  • 高智能数据构建中的难点与挑战
    • 非结构化数据规模庞大且多源异构(文本、图像、视频、音频、CAN 总线数据、位置信息等),需要高效处理与统一管理。
    • 数据标注成本高且对准确度要求极为苛刻,尤其在自动驾驶安全相关领域,错误标注可能导致模型推理出现系统性偏差。
    • 场景长尾与极端复杂工况问题,必须通过数据策略(采集、清洗、增广、筛选)与模型策略结合才能有效应对。
    • 数据隐私与合规性挑战,特别是涉及车主个人信息、拍摄到行人面部等。
  • 与 AI 大模型结合的思路
    • 如何借助大模型(如 GPT 系列模型、BERT 变体、中文大模型的最新进展)来快速对非结构化数据进行语义理解、自动生成标注建议等,从而显著提升数据构建效率。
    • 在自动驾驶场景中,利用大模型做数据自动补全、文本解析、日志分类与异常检测等技术实践价值与应用案例。

2、非结构化文档如何快速结构化

  • 典型自动驾驶非结构化数据来源与处理痛点
    • 车辆系统日志、故障诊断报告、研发文档、测试报告、语音交互日志等。
    • 在大规模数据平台中如何进行分块、分布式存储与高并发处理。
  • 基于大模型的文档解析与结构化技术
    • 预训练语言模型(如 Chinese-BERT、ERNIE、MOSS 等)如何提取关键语义信息。
    • 文档向量化与嵌入:使用向量数据库(Milvus、Faiss、ElasticSearch)快速检索和聚类海量文本。
    • 文本结构化工具链
      • 自定义规则 + 大模型辅助解析:结合正则表达式、高级匹配规则、命名实体识别与大模型零/少样本学习能力加速处理。
      • 标签/字段自动化抽取:例如从故障诊断报告中自动提取故障类型、发生频率、影响范围等字段,用于结构化表格或 JSON。
    • 落地实践:文档结构化自动管线搭建
      • 数据接入与初步清洗(高效OCR、转录等);
      • AI 大模型辅助的文本内容解析;
      • 统一数据模型(UDM)设计与关联数据库/数据湖。

3、高质量训练数据的标准定义与评估方法

  • 自动驾驶场景下“高质量数据”评价指标
    • 准确性:标注精准度(对于感知层,目标检测/分割的 IOU 指标;对于决策层,场景标签分类的准确率)。
    • 完整性:是否覆盖了自动驾驶主要场景(高速、城市、隧道、恶劣天气、多车道拥堵等),以及长尾/极端场景占比。
    • 一致性:不同数据源(传感器)间的数据同步与融合程度,标注结果是否有跨源一致性。
    • 新鲜度:数据是否及时更新,尤其车载传感器与路侧单元融合时,时间戳对齐和版本控制是否完善。
  • 通用的数据质量评估手段
    • 统计分析:分布可视化、异常检测、聚类分析、一致性检查。
    • 模型验证:利用已有小规模高置信度标注数据或仿真环境做快速验证。
    • 自动化工具链:对标注错误、数据缺损、标签不一致等进行自动检测和报警。
  • 基于大模型的辅助评估
    • 使用大模型做数据异常语义检测:例如在大量文本日志中,自动检测潜在的标签不一致、语义冲突或非预期文本输入。
    • 结合主动学习思路,为自动驾驶数据的增量采集与标注提供置信度筛选机制;在模型预测结果不确定性较高或罕见场景中,优先触发人工复核。

4、大模型在自动化标注中的应用场景与核心能力

  • 自动化标注的流程
    • 感知层常见标注类型:物体检测(bounding box、polygon)、语义分割、关键点检测、3D 点云标注(激光雷达/毫米波雷达数据等);
    • 语音交互/文本处理场景常见标注类型:对话意图分类、槽位填充、故障日志中错误类型识别等。
  • 大模型辅助自动标注的实现思路
    • 图像/视频标注:结合视觉大模型(如 Vision Transformer、Swin Transformer、SEER 或国内研究团队自研的大规模视觉预训练模型),对图像中对象类别与位置进行初步检测并生成标注草稿;再由人工快速审核修正或通过主动学习循环不断优化。
    • 文本标注:利用 GPT 等语言大模型进行实体识别、关系抽取、分类标注。
    • 3D 点云标注:通过深度学习网络(SECOND、PointPillars、CenterPoint 等)对点云进行物体检测,输出可能的点云包围盒,由大模型或自定义规则进一步筛选与自动化合并/拆分,大幅缩短人工操作时间。
  • 大模型自动标注的优势与挑战
    • 优势
      • 极大提高标注效率、减轻人工工作量;
      • 初步标注的精度对于常见场景较高,可帮助企业快速构建海量训练数据。
    • 挑战
      • 模型输出仍需人工或小规模高精准模型校验,以确保质量;
      • 长尾及非典型场景中自动化标注质量不稳定;
      • 场景需求快速变化时,如何动态更新自动标注模型。

5、大模型辅助下的数据扩增与数据修正

  • 数据扩增在自动驾驶中的作用
    • 自动驾驶系统的泛化能力与安全性极大依赖于对各种场景的覆盖,涵盖天气、路况、交通参与者行为等多变因素;
    • 传统扩增手段(旋转、平移、颜色变换等)与大模型辅助的“语义级”扩增(在不破坏场景逻辑的前提下添加障碍物、改变天气等)。
  • 基于大模型的图像/文本内容生成与数据扩增
    • 图像生成:Stable Diffusion、ControlNet 等扩展思路,通过文字描述或初始场景输入生成更多多样化图像,用于训练数据拓展;
    • 文本生成:在对话系统或用户手册场景下,使用 GPT 类模型生成更多变体或噪声文本以强化模型对语言变化的鲁棒性。
  • 自动纠正与数据修正
    • 在标注中发现错误或不一致标签,如何利用大模型进行自动纠正建议;
    • 与数据校验管线结合,让大模型对低置信度样本自动做“二次判断”或提出修正建议,在人工确认后完成修正闭环。

6、多模态数据融合输入训练的要点

  • 自动驾驶多模态数据融合场景
    • 摄像头与激光雷达数据结合(2D-3D 融合)进行目标检测与跟踪;
    • 高精地图/导航地图与车辆前视摄像头融合进行车道线检测、道路语义识别;
    • 车内语音/日志与摄像头数据相结合,用于驾舱监控、疲劳检测、行为分析。
  • 多模态大模型训练管线设计
    • 数据对齐与时间同步:保证不同传感器的采样时间戳、坐标系一致;
    • 特征提取与表示:摄像头图像特征、激光雷达点云特征如何进行融合或注意力交互;
    • 融合策略:early fusion、late fusion与intermediate fusion;
    • 训练与推理阶段一致性:在推理/上线阶段,如何保证实时多模态数据处理能力与训练设置一致。

7、智驾云多模态数据处理架构

  • 多模态数据处理的典型系统架构
    • 数据采集层:车辆采集(摄像头、雷达、ECU 日志)、路侧设备、第三方数据源;
    • 数据传输与预处理层:5G/V2X 通信、数据缓存、消息队列(Kafka、RabbitMQ)、数据格式转化(ROSbag、PCD 文件、视频流解码等);
    • 云端存储与管理层:分布式文件系统(HDFS、Ceph)、数据湖、关系型数据库/时序数据库等;
    • 多模态数据处理引擎层:AI 训练平台(GPU/TPU 集群)、自动标注服务、大模型推理服务、多模态融合算法服务;
    • 数据可视化与下游应用层:驾驶仿真、数据洞察、模型评估平台。
  • 关键技术要点
    • 对接高并发实时流数据的方法(Spark Streaming、Flink 等流式处理)以及存算分离如何设计;
    • 如何在云端管理大模型推理负载(分布式推理框架、模型缓存、弹性伸缩)。

8、智驾云多模态数据处理工具链

  • 云端数据处理与管理工具
    • 自动驾驶数据管理平台:数据标注管理、版本控制、数据集打包与发布;
    • AI 训练与推理平台:Kubernetes + Kubeflow 或 MLflow 的流水线管理;
    • 分布式计算:Spark、Flink、Ray 在自动驾驶数据清洗、ETL、特征工程中的角色。
  • 多模态数据融合的云端工作流
    • 云端对接传感器数据:上传、预处理(去噪、格式转换)、存储;
    • 调用大模型或自研模型进行自动标注/初步推理,生成中间结果;
    • 人工复核与反馈;
    • 数据入库或下发到仿真/测试环节做模型训练、性能验证。

9、多模态数据处理中的性能优化与大规模分布式训练

  • 性能优化的关键要素
    • I/O 瓶颈:数据读取速度、不同文件系统及列式存储方式对多模态数据读写效率的影响;
    • 并行度设置:显存/计算资源优化、多 GPU 分布式训练的通信开销;
    • 网络带宽与延迟:云端计算集群内部网络如何提升吞吐量,减少训练等待时间。
  • 分布式训练框架的对比与应用
    • PyTorch DDP、Horovod、Megatron-LM 等在大模型训练场景下的实践;
    • 混合精度(FP16/BF16)、模型并行、流水线并行在自动驾驶多模态大模型中的应用;
    • 如何根据场景选择合理的并行策略(数据并行 vs. 模型并行 vs. 流水线并行)。

10、多模态数据融合更深层的策略与方法

  • Early Fusion深入剖析
    • 在输入层就将多源传感器数据合并,例如将激光雷达点云投影到图像平面后做 2D+3D 协同检测;
    • 优势:模型可更充分学习到多模态的低级特征融合;挑战:对同步和标定准确度要求极高,数据维度大且对硬件性能要求也高。
  • Intermediate Fusion
    • 让不同模态先提取特征,再在中间层用注意力机制或特征拼接进行融合;
    • 代表性网络结构:Hierarchical Fusion、Cross Attention 等,探讨在自动驾驶感知与预测中如何使用自注意力机制让图像特征和点云特征交互。
  • Late Fusion
    • 不同模态在单独网络中完成推断,然后在决策层对结果进行融合(如多模型投票、置信度加权、逻辑合并等);
    • 优势:系统更灵活,易于扩展;缺点:丢失了融合的细粒度信息,整体精度可能较低。

11、传感器标定与配准技术

  • 标定与配准的重要性
    • 在自动驾驶多传感器环境中,摄像头内参、外参以及相对于激光雷达的旋转和平移矩阵对融合效果至关重要;
    • 标定误差会导致融合后目标检测位置偏移或不一致,影响可视化和算法性能。
  • 标定流程
    • 单目相机内参标定:基于棋盘格或标定板,获取相机焦距、光心位置、畸变系数;
    • 多相机系统外参标定:通过特征对应、空间几何法或激光雷达辅助标定;
    • 激光雷达与摄像头融合标定:基于同场景点云与图像特征匹配,或使用额外的标定板(带有 3D 参考点)。
  • 标定工具与自动化
    • 常见开源标定工具箱:ROS camera_calibration、Kalibr、MATLAB Camera Calibrator、Autoware 等;
    • 大模型在标定中的潜在辅助:自动识别标定板角点、自动匹配特征点,提高标定效率。

12、高阶模型精度优化:Fine-tuning 与后处理策略

  • Fine-tuning 大模型在多模态感知场景的策略
    • 如何在已有预训练视觉/语言/多模态大模型基础上进行微调,使之适应特定的自动驾驶感知或场景理解任务;
    • 参数高效微调方法(LoRA、Prefix Tuning、Adapter 等)在算力和效率上的优势,适合快速试验。
  • 后处理与插值策略
    • 对于感知模块输出的检测或分割结果,常见后处理手段:NMS、时序平滑、轨迹跟踪等;
    • 大模型辅助的轨迹预测与插值方法,让检测结果在时序上更稳定并为决策模块提供更平滑的输入。

13、复杂环境与长尾场景数据处理策略

  • 长尾场景的特点与难度
    • 极端气候(暴雨、暴雪、沙尘、强光等)、特殊道路状况(塌方、施工、特殊地形)、罕见交通参与者行为(逆行、醉驾、随机变道等)。
    • 数据采集难度大、出现频率低,但对系统安全性至关重要。
  • 长尾数据管理与采集
    • 主动搜集策略:在实际道路测试或模拟器中人工触发特定场景;
    • 仿真平台支持:基于 CARLA、LG SVL、PreScan 等仿真软件生成极端场景数据;
    • 大模型辅助生成:在现有数据基础上,语义方式合成极端天气效果或稀有行为场景。
  • 长尾场景专用策略
    • 在标注与模型训练阶段给予长尾场景更高权重;
    • 使用不平衡数据处理技巧(focal loss、在线难例挖掘)或基于强化学习的自动数据筛选。

14、智驾云多模态数据处理中的质量保障与监控

  • 数据全生命周期监控
    • 采集阶段:传感器在线检测、数据格式合规与基础质量检查;
    • 传输阶段:数据丢包检测、存储一致性校验;
    • 标注与训练阶段:标注质量抽样检验、模型训练日志与指标监控;
    • 上线阶段:在线推理质量监测与回传数据分析,形成闭环。
  • A/B 测试与增量迭代
    • 在自动驾驶场景下进行新老模型的并行测试,比较其在实际或模拟环境中的表现;
    • 通过在线学习或半自动化管线快速迭代新模型,并利用回传数据进行纠偏。

模块二:AI Agent研发(3天)

1、高级提示工程与思维链技巧

  • 提示工程在 AI Agent 中的地位
    • 如何构建复杂场景下可扩展的 Prompt 模板。
    • 提示工程如何与 Agent 的Action和Observation相互关联。
  • Chain-of-Thought与Self-Consistency技术
    • 思维链的核心要点:引导模型进行多步推理。
    • 自洽性在搜索任务、推理任务中的应用。
    • 代码示例:编写一个内置思维链的提示模板,示范零样本、单样本与少样本提示的对比。
  • 提示工程中的上下文管理
    • 如何有效利用上下文窗口,处理汽车行业的特定指令或术语。
    • 对话式问答 vs. 工具调用提示。

2、LangChain 框架进阶

  • LangChain 核心组件与工作流程
    • PromptTemplate、LLMChain、Index、Tools等概念。
    • 介绍 LangChain Expressions Language的用法,使链式调用更加直观。
  • LangChain 在 Agent 研发中的地位
    • LangChain 如何简化构建Agent和管理对话状态。
    • ReAct 模式在 LangChain 中的实现思路:Action-Observation-Thought 循环。
  • 与知识库、检索系统的耦合
    • 如何利用 LangChain 的文档Loader)集成企业内部大量文档(如技术手册、维护文档、汽车装配指令等)。
    • 向量数据库在 LangChain 中的对接。
  • 复杂对话流程:多轮对话与上下文保持
    • 构建多轮对话 AI Agent 的技巧:对话记忆 (ConversationBuffer) 与上下文管理。
    • 在汽车维修场景下保持上一次对话的故障排查结论如何影响下一步决策。

3、RAG系统原理与实操

  • RAG 核心概念与对 AI Agent 的价值
    • 汽车行业中大量文档、维修手册、供应链文件对 AI Agent 的信息依赖。
    • RAG 如何确保答案的可控性、准确性与可解释性。
  • 文档分块与向量化
    • 如何针对汽车技术文档进行最佳分块策略(如基于段落、基于语义等)。
    • 向量化工具选择(国内外框架对比:Faiss、Milvus、Elasticsearch、Chroma 等)。
  • 检索策略与检索技巧
    • ElasticSearch 在大规模文档检索中的优势。
    • 本地向量数据库 (如 Milvus) 与云服务 (如 阿里云 DashVector) 的对比。
    • Query 优化与语义搜索:如何让 AI Agent 准确地找到与汽车故障相关的段落。

4、AI Agent 的基础结构与类型

  • 不同类型的 AI Agent
    • 工具型 Agent、规划型 Agent、对话型 Agent、问题求解型 Agent 等分类。
    • ReAct、MRKL、Plan-and-Execute 等常用模式对比。
  • AI Agent 与外部工具的交互
    • 车企常见的外部工具&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TsingtaoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值