本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
AI Agent是什么
AI Agent与大模型的行业应用
1. 大模型与AI Agent
大模型能够适应不同的任务,通过少样本甚至零样本的方式产生优质回答或内容。无论是GPT-4o、ChatGLM、Llama系列,还是Qwen与国内各大厂自研的通用模型,在大规模参数的加持下,其对人类语言的理解与推理已开始逼近甚至局部超越人类水准。
然而,大模型并不等同于商业成功,要在复杂业务中落地,还需要一整套Agent模式来驱动。所谓AI Agent,往往指在大模型之上封装的高层业务逻辑与工具交互组件,让“被动回答”的语言模型摇身一变,成为“主动执行”的智能体。很多时候,Agent需要调用外部函数(Function Calling)、与检索组件(RAG)交互、执行特定的业务流程,才能真正将大模型的潜力释放出来。
传统智能客服 vs. RAG⼤模型智能客服
从业务视角看,目前AI Agent与大模型的应用有以下几个鲜明趋势:
- RAG与知识检索: 通过RAG技术,将外部知识库与大模型结合,减少模型“幻觉”,增强回答的准确性和可追溯性;
RAG⼤模型智能客服框架
- 多轮对话与人机协作: Agent不再仅是问答,而是能根据上下文,自主规划后续对话,并可在必要时引入人工坐席或其他系统协同;
- 事件驱动与主动触达: 智能体不仅被动响应用户问题,还能根据业务事件(比如流量异常、用户拖单、订单纠纷)进行主动沟通或任务执行;
- CoT、ReAct等推理范式: 通过Chain-of-Thought、ReAct等技术,引导语言模型在回答前进行多步推理、分析与调用外部API的动作,极大提升了可解释性与执行力。
2. 三个行业案例
- 在线教育:51Talk
在线教育行业竞争激烈,用户付费转化、课程出席率以及学习全流程服务体验尤为关键。51Talk搭建了智能客服体系,借助事件驱动、RAG模型和人机协作,成功提升了预约率和出席率。这背后究竟是如何实现的?
51 Talk的智能客服落地曲折与困难
- 出行服务:哈啰出行
哈啰出行在国内骑行、打车、顺风车、租车等业务上积累了大量用户与数据。随着业务增长,对用户服务的智能化需求也愈加丰富。他们从Copilot模式(辅助运营、辅助研发)进阶到Agent模式(执行业务流程、自动生成营销策略)。其技术架构、模型选型、业务场景应用的挑战和思路是怎样的?
哈啰AI场景
- 内容平台:B站
B站作为年轻人的潮流文化聚集地,也在客服、内容检索、UP主创作协同等场景积极探索RAG与强化模型结合的模式。他们基于大模型的RAG检索,将非结构化海量内容转换为高效的知识库,并通过“领域化”微调来保证回答安全可控。他们在“知识构建、检索效率、回答准确性”方面有哪些经验可以借鉴?
B站领域知识库的构建
行业案例深度分析
A. 在线教育案例:51Talk的智能客服与事件驱动落地
1. 业务背景与需求
对于在线教育平台而言,客服质量直接关系到用户留存和续费率。51Talk在全球范围内开展在线外教课程,海外业务量增长迅猛,但客服和销售人数有限,无法做到24小时高水平在线。传统的“人工一对多”客服模式常常出现响应滞后、人力成本高等问题。
- 核心业务指标:预约率、出席率。
- 面临挑战:用户需求复杂多变,客服配比不足,无差别回复无法满足学员的多样化场景需求。
2. 传统方案局限与大模型切入
最早51Talk采用过传统QABot与TaskBot方式:
- QABot: 基于FAQ的检索式答疑,但只能被动回答;