赛事获奖|TsingtaoAI荣获“古莲杯”未来智造人才创新创业大赛奖项

2025年海淀区温泉镇经济社会高质量发展大会暨建设世界领先科技园区推进会圆满落下帷幕,温泉镇首届“古莲杯”未来智造人才创新创业大赛举行颁奖。本次大赛聚焦温泉镇 “1 + 4” 核心产业,重点面向新一代信息技术、医药健康、人工智能+等领域设置通用赛道和专项赛道。TsingtaoAI带来的“基于DeepSeek的具身智能实训解决方案——从DeepSeek+机器人到通用具身智能”项目获得“龙芯中科专项赛道”奖项。

关于TsingtaoAI——基于DeepSeek的具身智能实训解决方案

Embodied AI作为人工智能领域的前沿方向,突破了传统机器人“感知-规划-执行”的割裂范式,强调智能体通过物理躯体与环境的动态交互实现认知与决策。然而,现有技术面临两大核心挑战:

  1. 环境感知的局限性:传统2D视觉难以精准获取三维空间信息,导致物体定位、姿态估计与场景重建精度不足;

  2. 语义理解的瓶颈:大语言模型(如DeepSeek)虽具备强大的自然语言处理能力,但需与物理世界动态交互以实现“语言-动作-环境”的闭环映射。

基于此,本方案提出以DeepSeek大模型为核心,结合3D视觉感知多模态融合技术,构建“端到端”的具身智能实训平台,解决高校在机器人教学与科研中“理论脱离实践”的痛点。

系统架构与技术实现

2.1 总体架构:四层闭环逻辑链

系统采用“多模态输入→感知与理解→行动执行→反馈学习”的闭环架构,深度融合语言、视觉与物理交互:

  1. 多模态感知层

    1. 语音识别:集成Whisper与AppBuilder SDK,支持中英文语音指令实时转译(识别精度≥95%);

    2. 3D视觉感知:采用Orbbec Gemini 335L与Femto Bolt iToF深度相机,实现毫米级精度(深度误差≤2%)的物体识别、三维定位(精度±1mm)及语义分割;

    3. 触觉反馈:机械臂末端配备六维力矩传感器(量程0-50N·m),实时监测抓取力(分辨率0.01N)并动态调整夹持策略。

  2. 多模态理解与决策层

    1. DeepSeek语义解析:通过指令分解(如“沏茶”任务→取杯、注水等子任务)生成动作序列;

    2. 多模态融合模型:基于Transformer架构,融合视觉点云(PCL)、语音文本(NLP)与触觉数据(Force-Torque),构建场景语义图(Scene Graph),支持复杂指令(如“将绿色积木置于红色方块左侧10cm处”)的精准解析。

  3. 行动执行层

    1. 路径规划:基于RRT*(快速探索随机树)与逆运动学(IK)算法,生成无碰撞轨迹(规划时间≤50ms);

    2. 机械臂控制:采用高精度协作机械臂(如mycobot 320-M5,重复定位精度±0.03mm),支持拖动示教与阻抗控制,实现动态避障与柔性抓取。

  4. 学习反馈层

    1. 深度强化学习(DRL):在PyBullet仿真环境中预训练抓取策略(PPO算法),迁移至实体机械臂实现零样本适配;

    2. 多模态数据闭环:通过动作成功率(Success Rate)与力控误差(Force Error)反馈,持续优化决策模型参数。

核心技术突破

3.1 多模态语义对齐

提出VLA(Vision-Language-Action)融合框架,通过跨模态注意力机制对齐语言指令与视觉特征:

  • 语言-视觉映射:利用CLIP模型提取文本与图像的联合嵌入,实现“红色茶杯”“方形托盘”等语义概念的跨模态检索;

  • 动作-环境耦合:基于3D场景重建(TSDF体积融合算法),生成6D物体姿态(SE(3))与抓取点热力图(GraspNet),指导机械臂完成精准操作。

3.2 实时分布式推理

  • 边缘计算优化:在NVIDIA Jetson Orin Nano(算力40 TOPS)部署DeepSeek模型,支持多机多卡分布式推理(延迟≤200ms);

  • 模型轻量化:采用LoRA(低秩自适应)技术微调大模型,参数量压缩至原模型10%,适配边缘设备资源限制。

3.3 安全与鲁棒性保障

  • 动态避障策略:结合RGB-D相机的点云数据与机械臂雅可比矩阵,实时计算碰撞锥(Collision Cone),触发紧急制动(响应时间≤10ms);

  • 力控自适应:基于阻抗控制模型(F=KpΔx+KdΔvF=KpΔx+KdΔv),动态调整末端执行器刚度系数(Kp∈[100,2000]N/mKp∈[100,2000]N/m),适应易碎物体抓取。

教学与科研应用场景

4.1 教学实训模块

  • 基础实验

    • 实验1:3D视觉标定与手眼校准(Eye-to-Hand),实现相机坐标系与机械臂基坐标系的精确转换(误差≤0.5mm);

    • 实验3:多模态物体抓取,结合YOLOv8-3D检测模型与GQ-CNN抓取预测网络,成功率≥92%。

  • 高阶项目

    • 实验9:工业分拣系统开发,集成DeepSeek与ReAct框架,实现基于语义的工件分类(准确率≥95%);

    • 实验10:AIGC创意任务生成,通过Stable Diffusion生成指令序列,驱动机械臂完成艺术绘画。

4.2 科研创新方向

  • 视觉-语言-动作一体化模型:探索ViLa(Vision-Language-Action)架构在开放世界中的零样本泛化能力;

  • 跨模态终身学习:设计增量式训练策略,使系统持续适应新物体与新任务(Catastrophic Forgetting抑制率≥85%)。

方案优势与适配场景

  1. 真实场景复现:通过3D视觉与触觉反馈模拟工业4.0环境(如无序分拣、柔性装配),缩短“仿真→实机”迁移周期;

  2. 前沿技术集成:深度融合DeepSeek、3D视觉、DRL等关键技术,支持高校在具身智能领域的“顶会论文级”研究;

  3. 模块化扩展:硬件支持Orbbec/Femto相机互换,软件兼容ROS2与MindSpore框架,适配不同学科需求。

本方案已通过华为昇腾兼容性认证,并在华中科技大学、北京邮电大学等高校落地。后续也将会与龙芯中科等国产信创厂商打通兼容,助力培养具备“认知-决策-执行”全栈能力且自主可控的复合型人才,为AGI的终极目标提供技术储备与人才基石。

TsingtaoAI依托高水平的产学研团队,将DeepSeek大模型与机器人技术深度耦合,面向高校实验室,打造“教学-科研-产业”三位一体的具身智能教育生态。通过实训课程与进阶实验,学生可系统性掌握从多模态感知到自主决策的全链条技术,为AI与机器人领域输送具备创新能力的领军人才。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TsingtaoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值