基于GAN的高容量隐写术:SteganoGAN: High Capacity Image Steganography with GANs

该文介绍了一种利用GAN(生成对抗网络)进行图像隐写的方法,通过优化模型提升隐藏信息后的图像质量。传统方法每像素仅能隐藏0.4bit信息,而该方法能实现每像素4.4bits的嵌入,同时保持图像质量。网络结构包括编码器、解码器和批评网络,使用密集连接减轻梯度消失问题,并用多个损失函数优化。实验结果显示,这种方法成功隐藏了数据并提高了隐写容量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SteganoGAN: High Capacity Image Steganography with GANs

2019年的文章,收录于arxiv,没有发表在期刊
https://arxiv.org/abs/1901.03892
https://github.com/DAI-Lab/SteganoGAN/tree/master/steganogan

概述

本文使用GAN,在图像中隐藏任意二进制数据,优化模型产生的图像的质量。

传统的图像隐写术,只能够在每个像素中隐藏0.4bit的信息。不是说不能隐藏更多,而是在超出这个容量之后,会导致隐写图像能够被自动隐写分析攻击检查出伪影,从而无法实现隐写中的隐藏的目的。

使用深度学习能够实现图像的端到端的隐写。

本文使用GAN来实现隐写。使用dense connections来减轻梯度消失问题,提高隐写性能。使用多个loss function来优化encoder,decoder和critic network。本文的方法成功嵌入数据,并实现了每像素4.4bits信息的嵌入。

隐写效果图【我看不出区别】
在这里插入图片描述

实现

网络结构

网络分为三个部分。
一个是encoder,输入原始图像cover im

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值