- 博客(32)
- 收藏
- 关注
原创 pytorch基本使用【笔记】
这个是相当于笔记的性质,是为了记录一些pytorch的基本使用。高强度CV,但是基本代码都是经过自己的试运行的。OneHot这个是可以通过给定int类型的一维Tensor,然后作为索引,从指定的矩阵中取值。可以用于生成onehot label。import torchones = torch.eye(10)print(ones)label_index = torch.Tensor([1,2,3,4]).long()onehot = ones.index_select(0,label_i.
2022-03-26 20:13:35 1859
原创 反知识蒸馏后门攻击:Anti-Distillation Backdoor Attacks: Backdoors Can Really Survive in Knowledge Distillation
Ge, Yunjie, et al. “Anti-Distillation Backdoor Attacks: Backdoors Can Really Survive in Knowledge Distillation.” Proceedings of the 29th ACM International Conference on Multimedia. 2021.Anti-Distillation Backdoor Attacks: Backdoors Can Really Survive i..
2022-01-19 18:34:50 5892 3
原创 Linux系统下使用anconda配置pytorch环境
conda常见命令其实这个相当于自己的备忘录服务器使用的是ubuntu,子账户。1 anaconda安装anconda离线安装anaconda下载地址https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh到下载的文件夹下执行bash Anaconda3-2020.02-Linux-x86_64.sh这时候可能会出现(我出现了)无法使用conda指令,所以需要添加环境变量echo 'export PATH
2021-12-12 11:25:36 1562
原创 图像的指纹——从自然图片到GAN
从照片指纹讲起这部分来自于百度百科,几乎一字不改2015年,facebook提交了照片指纹的专利。照片指纹,该技术可以根据数码照片的各种特征,识别出“照片指纹”,并确定这张照片由哪一部手机或者数码相机所拍,这个识别功能能够在社交网络中派上特别的用场,并确定照片版权归属。每一部智能手机的摄像头或是数码相机,都会在照片中留下一些“指纹”。比如,数字照片文件中会包括一些“元数据”(类似数码照片的属性参数),描述了照片拍摄时所用的摄像头种类,光圈等等。另外,一个摄像头的传感器芯片可能发生了缺陷,因此在
2021-11-05 16:13:08 2318
原创 对抗样本鲁棒性——频域角度A FREQUENCY PERSPECTIVE OF ADVERSARIAL ROBUSTNESS
A FREQUENCY PERSPECTIVE OF ADVERSARIAL ROBUSTNESS这是非常新的一篇文章。来自University of Maryland和Facebook AI Research。摘要本文最核心的观点就是:对抗样本是高频噪声,这一个观点是一个误解。本文的分析表明,对抗样本既不是高频,也不是低频,而是依赖于数据集。预备知识首先本文是说明了一下DCT变换,以及对抗样本的基本公式。懒得打公式就直接截图了。DCT对抗样本表示就是为了寻找一个扰动 δ\de
2021-11-02 21:33:49 1874
原创 无数据模型窃取——Data-Free Model Extraction
Data-Free Model Extraction2021CVPR论文地址Truong, Jean-Baptiste, et al. “Data-free model extraction.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.模型窃取,指攻击者通过黑盒查询,从而还原模型或者获取模型训练集信息的攻击。模型窃取繁衍出非常多的方式,比如数据增强,差分查询,
2021-10-27 15:03:48 2926
原创 Zhu-Net——一个隐写分析网络
Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysisTIFS2019这是来自北邮的一篇论文论文地址GitHub地址 https://github.com/niefengxxx/SepNet但是GitHub上只有一个py文件两个npy文件,感觉量超少诶。Zhang, Ru, et al. “Depth-wise separable con
2021-10-26 23:30:04 2575 4
原创 PEEL——深度隐写信息去除攻击——PEEL: A Provable Removal Attack on Deep Hiding
PEEL: A Provable Removal Attack on Deep Hidinghttps://arxiv.org/abs/2106.02779这篇论文讲的主要是使用Inpainting的方式,在没有深度隐写方式的先验信息的前提下,从图像容器中移除秘密信息。这个方法被称为PEEL,可以在删除秘密图像的同时,不影响图像容器的视觉质量。深度隐写术先进的深度隐写技术能够大大提升信息容量同时保持图像的视觉质量。现有的深度隐写方案大致可以分为两类,一类是DDH,cover-dependent
2021-10-23 15:44:03 1410 1
原创 针对图像修复的对抗攻击——Markpainting: Adversarial Machine Learning meets Inpainting
针对图像修复的对抗攻击——Markpainting: Adversarial Machine Learning meets Inpainting这篇论文是arxiv收录的论文。https://arxiv.org/abs/2106.00660warning:最好看原文,本文我其实也没有看太明白Inpainting是图像修复技术,基于基于生成模型的学习的插值技术。也就是其实这里论文的Inpainting是基于NN(神经网络)的。众所周知。NN并不靠谱,懂王特朗普就曾经发表过相关的见解:所以,根
2021-10-22 15:48:06 542
原创 通用对抗扰动——Universal adversarial perturbations
Universal adversarial perturbations来自CVPR2017的一篇论文。引用量也上千了。https://openaccess.thecvf.com/content_cvpr_2017/html/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.html概述对抗样本,众所周知,其目的就是在图像中添加一个扰动,使得图像在推理环节中给出错误的输出。也就是:f(x+δ)≠f(x)f(x+\
2021-10-19 20:25:50 5203 2
原创 基于生成对抗网络的隐写——GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY
GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHYICLR 2107https://openreview.net/forum?id=H1hoFU9xe隐写术就是构建一个映射SSSS:T×I→I^S:T\times I \to \hat IS:T×I→I^TTT是message,III是image,I^\hat II^是包含message的III。具体实现引入SGAN。包含三个部分生成网络G,生成看起来真实的数据判别器网络D,
2021-10-18 15:21:01 1449
原创 图像隐写 通过GAN的隐形隐写术 Invisible steganography via generative adversarial networks
Invisible steganography via generative adversarial networksZhang, Ru, Shiqi Dong, and Jianyi Liu. “Invisible steganography via generative adversarial networks.” Multimedia tools and applications 78.7 (2019): 8559-8575.论文地址在这篇论文中,提出一种创新的CNN架构,名为ISGAN,用
2021-10-12 19:36:28 2390
原创 图像隐写 零 ——图像隐写基本介绍
零因为研究课题与图像隐写相关,因此计划在读论文的时候顺便做一些笔记。这个是图像隐写系列的第一篇。目前的图像隐写可以大致分为非深度(传统)隐写算法和深度学习隐写算法。计划是从传统的隐写开始介绍,然后过度到深度学习隐写算法。此外还会看一些隐写分析的内容。本着学习效率的原则,笔记不会非常详细。隐写介绍所谓隐写术(这里是特指图像隐写),就是在图像中隐藏信息。隐写,包含两个要点,一是隐:隐藏,二是写:写入。一个合格的隐写术,既要实现隐藏的目的,能够抵抗人类视觉的考验,还有一些隐写分析算法的分析,还要能
2021-10-12 19:02:12 1861
原创 基于GAN的高容量隐写术:SteganoGAN: High Capacity Image Steganography with GANs
SteganoGAN: High Capacity Image Steganography with GANs2019年的文章,收录于arxiv,没有发表在期刊https://arxiv.org/abs/1901.03892https://github.com/DAI-Lab/SteganoGAN/tree/master/steganogan概述本文使用GAN,在图像中隐藏任意二进制数据,优化模型产生的图像的质量。传统的图像隐写术,只能够在每个像素中隐藏0.4bit的信息。不是说不能隐藏更多
2021-10-10 14:41:59 3343 1
原创 基于CNN对抗嵌入的图像隐写——CNN-Based Adversarial Embedding for Image Steganography
CNN-Based Adversarial Embedding for Image Steganographyhttps://ieeexplore.ieee.org/abstract/document/8603808这篇论文发表在TIFS( IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY),TIFS是网络与信息安全领域的国际两大顶级期刊之一,中国计算机学会(CCF)推荐的A类期刊,SCI一区TOP期刊,目前影响因子有7多了。1 概
2021-10-09 14:13:37 1894 2
原创 常用学术网站的汇总
这个帖子是为了汇总一些自己常用的,用于找论文的网站。找论文1.谷粉学术介绍:谷粉学术是谷歌学术的镜像。https://gfsoso.99lb.net/2.文献部落集中了谷歌学术,scihub等一些常用的网站。http://www.459.org/3.SCIHUB用于论文下载。好评https://tool.yovisun.com/scihub/4.arxiv每日学术速递会推荐一些最新的论文,可以逛逛看。https://www.arxivdaily.com/?categoryI.
2021-10-09 12:36:32 1924
原创 GAN的后门攻击:The Devil is in the GAN: Defending Deep Generative Models Against Backdoor Attacks
The Devil is in the GAN: Defending Deep Generative Models Against Backdoor Attacks链接: https://arxiv.org/abs/2108.01644IBM欧洲研究中心的一篇论文,主要讲述的内容是GAN的后门攻击。这篇论文称首次提出了GAN的后门攻击(对,和我之前读的论文一样,都是首次【狗头】)。这篇论文的内容不仅仅包括了GAN的后门攻击方式,还提供了防御的思路,因此论文的页数也达到了33页。1 GAN的概述
2021-10-08 23:49:17 934
原创 自编码器和GAN的后门攻击——BAAAN: Backdoor Attacks Against Autoencoder and GAN-Based Machine Learning Models
BAAAN: Backdoor Attacks Against Autoencoder and GAN-Based Machine Learning Models论文链接这是一篇arxiv上的论文。之所以看这篇论文,是因为对GAN和AutoEncoder的后门攻击产生兴趣。论文动机后门攻击往往应用于传统的图像分类任务上。在GAN,autoencoder这类生成任务上面临的则往往是成员推理攻击,也就是从模型中获取训练集内的个体信息。而本文将后门攻击扩展到生成任务上,使得GAN、AutoEncoder
2021-10-06 19:44:23 1183
原创 后门触发器之频域角度——Rethinking the Backdoor Attacks’ Triggers A Frequency Perspective
Rethinking the Backdoor Attacks’ Triggers A Frequency Perspective尚未发布,收录于arxiv—— 论文链接本文指出,现有的后门攻击在频域领域上的研究不足。因此本文提出通过频域信息来辨别后门样本,并以此构建了频域不可见的后门样本。一个直观的想法就是,后门样本与自然图像的概率分布不同。由于后门样本相比自然图像需要添加特定的trigger pattern,从而触发深度模型给出指定的输出结果。这种添加的特定的trigger pattern,也
2021-10-06 12:00:22 1587
原创 通过GAN清除神经网络后门!—— GangSweep: Sweep out Neural Backdoors by GAN
GangSweep: Sweep out Neural Backdoors by GANMM’20:Media Interpretation & Mobile Multimedia文字链接上接 neural cleanse。neural cleanse通过反向工程构建触发器,从而利用触发器的信息识别和去除后门。但是这种方式只适合于固定的简单的后门触发器,不能够适用于隐形后门、更加复杂的后门触发器。因此本文提出了GangSweep。为什么不叫GANsweep?主要贡献首先:使用
2021-09-26 00:23:43 1125
原创 神经清洗——识别与去除后门:Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks2019 IEEE Symposium on Security and Privacy论文地址深度神经网络黑盒的一个基本问题是:无法详尽地测试他的行为。因为神经网络的输入是极高维度的,其输入样本空间非常非常大。这使得神经网络的后门攻击成为可能。这篇论文就是为了判断一个给定的DNN中是否存在一个触发器,会导致错误的输出。以及该触发器是什么样子的,已
2021-09-25 21:10:53 3735 3
原创 基于扭曲的后门攻击——WANET – IMPERCEPTIBLE WARPING-BASED BACKDOOR ATTACK
WANET – IMPERCEPTIBLE WARPING-BASED BACKDOOR ATTACKICLR 2021https://arxiv.org/abs/2102.10369之前的触发器都是基于噪声或特点模式,容易被人类肉眼发现。因此本文使用基于翘曲的后门触发器,并提出一种新的训练模式,称为“noise”mode(噪声模式)。这一后门样本在不损失攻击性能的前提下保证了隐形性。Image warpingImage warping是一种应用几何变换使图像发生变形的变换。具体可以看数字
2021-09-21 12:50:06 3142 1
翻译 基于激活聚类的后门检测:Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering
Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering网址:https://arxiv.org/abs/1811.03728一些老生常谈,Abstract、Introduction之类的都已经被我省略,当然我都看了。本文指出,后门检测是具有挑战性的。因为后门触发器是未知的,只有Adversaries知道。因此本文提出了Activation Clustering(AC),也就是激活聚类,对插入DNN的后门
2021-09-20 23:35:19 2294 2
翻译 一种数据增强方式 mixup: BEYOND EMPIRICAL RISK MINIMIZATION
mixup: BEYOND EMPIRICAL RISK MINIMIZATION这是ICLR2018的论文。https://arxiv.org/abs/1710.09412从本质上来说,mixup是在一对训练样本和标签的凸组合上训练神经网络。众所周知,在监督学习中,训练样本是一对(xi,yi)(x_i,y_i)(xi,yi)。mixup的做法就是随机抽取两个样本,然后对其进行插值。代码也非常简单。但是效果就是很好。还发了顶会。mixup的做法,导致决策边界从一个类线性过度到另一个类
2021-09-16 16:34:10 358
翻译 在神经网络中隐藏神经网络: On Hiding Neural Networks Inside Neural Networks
On Hiding Neural Networks Inside Neural Networkshttps://arxiv.org/abs/2002.10078v3本文提出了一种新颖的隐写方式,在神经网络中隐藏一个神经网络。神经网络所包含的参数往往比训练数据更多,过剩的参数量给信息隐藏提供了天然的土壤。神经网络拥有千万级甚至上亿的数据量,也就导致其参数的可能取值非常非常多,参数空间非常非常大。多任务的实质就是:优化获得分别满足各个任务的性能要求的参数空间的交集。本文也可以看成是一个多任务学习,满足原始
2021-09-14 20:22:38 423 1
翻译 ICLR2021——神经注意力蒸馏(NEURAL ATTENTION DISTILLATION):去除DNN中的后门触发器
NEURAL ATTENTION DISTILLATION: ERASING BACKDOOR TRIGGERS FROM DEEP NEURAL NETWORKS这篇论文发布在ICLR2021。https://arxiv.org/abs/2101.05930本文提出一种新型的防御框架:Neural Attention Distillation(NAD),用于去除DNN中的后门。NAD使用一个教师模型知道后门学生模型在一个小型的干净数据集子集上进行微调,使教师模型和学生模型的中间层注意力与教师网络
2021-09-14 18:43:01 1682
翻译 Open-sourced Dataset Protection via Backdoor Watermarking
Open-sourced Dataset Protection via Backdoor Watermarking这篇是李一鸣在arxiv上的文章。backdoor embedding based dataset watermarking (BEDW)文章的目的是为了保护开源数据集的知识版权。它的做法是:在开源数据集中添加利用BadNets和invisible attack的混合策略来标记数据集。其整体思想非常简单,和后门攻击完全一样。在验证上,利用假设检验来验证数据集是否被盗用。给出两个性能度
2021-09-14 09:51:52 224
翻译 An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks
An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks文如其名,确实是一种令人尴尬的简单的方法。更令人尴尬的是,它发了KDD2020,而我发不出来。介绍一种不需要进行训练的攻击方式。不改变原始模型的参数,而是插入一个微型木马模块(tiny trojan module, TrojanNet)。木马攻击是一种新型攻击方法,旨在操纵具有预先插入木马的模型。在模型最终打包发布之前,恶意的开发人员或黑客故意将木马
2021-09-13 23:25:08 678
翻译 Rethinking the trigger of backdoor attack
Rethinking the trigger of backdoor attackhttps://arxiv.org/abs/2004.04692本文是关于后门攻击的论文。本文指出目前的大多数后门攻击的触发集都是属于静态触发集(static trigger),也就是说触发集在训练过程和测试过程的appearance和located都是相同的,也就是指,触发模式都是相同的。这说明一个问题,触发集的鲁棒性会比正常样本差很多。可以这样理解,训练过程中样本的数量会很大程度上影响训练的效果。后门样本只有一个形
2021-09-06 16:35:54 552
翻译 Machine Learning Models that Remember Too Much
Machine Learning Models that Remember Too Much论文介绍:这是一篇2017年的发表在Proceedings of the 2017 ACM SIGSAC Conference on computer and communications security上的论文,内容是关于设计特殊的模型训练代码,帮助adversary获取模型的训练集信息。摘要Machine Learning(ML)正在成为一种商品。Data holder能够方便地使用大量的ML框架和服务
2021-09-03 11:17:57 465
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人