描述
大家都知道斐波那契数列,现在要求输入一个正整数 n ,请你输出斐波那契数列的第 n 项。
斐波那契数列是一个满足 的数列
数据范围:
要求:空间复杂度 O(1),时间复杂度 O(n) ,本题也有时间复杂度 O(logn) 的解法
输入描述:
一个正整数n
返回值描述:
输出一个正整数。
示例1
输入:4
返回值:3
说明:
根据斐波那契数列的定义可知,fib(1)=1,fib(2)=1,fib(3)=fib(3-1)+fib(3-2)=2,fib(4)=fib(4-1)+fib(4-2)=3,所以答案为3。
示例2
输入:1
返回值:1
示例3
输入:2
返回值:1
题目链接
答案解析
刚开始拿到题,特别是看到公式很多人反映都是用递归方法求解。但是使用递归在n较大时效率极低,主要原因如下:
- 重复计算
- 假如计算fib(6),需要计算fid(5)和fib(4);
- 计算fib(5)又需要fib(4)和fib(3), fib(4)又需要fib(3)和fib(2);
- 因此从fib(4)往下,都要计算多次。随着n增大,重复计算呈指数级增长。
- 时间复杂度O(2^n), 空间复杂度当n很大时,也会导致溢出。
解题步骤
仔细分析,发现题目只要返回fib(n)的值,因此我们只要知道fib(n-1)和fib(n-2)两个值就好,之前的值不需要保存。因此我们可以用两个变量去保存当前的前两项,逐个向后推进即可。
解题代码
# 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
# @param n int整型
# @return int整型
#
class Solution:
def Fibonacci(self , n: int) -> int:
# write code here
if n == 1 or n == 2:
return 1
a, b = 1, 1
for i in range(3, n+1):
cur = a + b
b = a
a = cur
return a

158

被折叠的 条评论
为什么被折叠?



