反弹的皮球

一球从100米高度自由落下,每次落地后反跳回原高度的一半;再落下,求它在第10次落地时,共经过多少米?第10次反弹多高?`

public static void main(String[] args) {
 double h = 100;//记录球每次反弹和下次落下时的高度
 double sum=0;//统计球一共经过多少米
 for(int i=1;i<=10;i++) {
  sum = sum+h;//累加上落地时经过的高度
  System.out.println("第"+i+"次落地时,共经过:"+sum+"米");
  h = h/2;//反弹的高度
  System.out.println("第"+i+"次落地反弹:"+h+"米");
  sum = sum+h;//再累加上反弹的高度
 } 
}



AI实战-笔记本电脑价格数据集分析预测实例(含19个源代码+193.46 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共186.94 KB;数据大小:1个文件共193.46 KB。 使用到的模块: numpy pandas os matplotlib.pyplot seaborn warnings re sklearn.preprocessing.LabelEncoder sklearn.model_selection.train_test_split sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.ensemble.RandomForestRegressor sklearn.ensemble.ExtraTreesRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.tree.DecisionTreeRegressor sklearn.neighbors.KNeighborsRegressor sklearn.linear_model.LinearRegression sklearn.linear_model.Ridge sklearn.linear_model.Lasso sklearn.linear_model.ElasticNet sklearn.linear_model.BayesianRidge xgboost.XGBRegressor lightgbm.LGBMRegressor catboost.CatBoostRegressor sklearn.preprocessing.StandardScaler sklearn.metrics.mean_absolute_error umap sklearn.cluster.KMeans sklearn.decomposition.PCA sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.manifold.TSNE sklearn.model_selection.cross_val_score sklearn.preprocessing.RobustScaler sklearn.ensemble.AdaBoostRegressor tensorflow tensorflow_datasets colorama.Fore colorama.Style sklearn.tree.DecisionTreeClassifier sklearn.ensemble.BaggingClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.cluster.DBSCAN sklearn.metrics.roc_auc_score sklearn.metrics.confusion_matrix sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline mlxtend.frequent_patterns.apriori mlxtend.frequent_patterns.association_rules sklearn.svm.SVC sklearn.tree.export_graphviz graphviz.Source sklearn.svm.SVR plotly.express plotly.graph_objects scipy.stats sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer xgboost optuna scipy.stats.skew regex sklearn.datasets.make_regression sklearn.linear_model.LogisticRegression sklearn.ensemble.RandomForestClassifier sklearn.neighbo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值