leetcode#5 最长回文字符串(Mancher留坑)

leetcode #5 最长回文字符串(Mancher留坑)

题目:给你一个字符串 s,找到 s 中最长的回文子串。

示例:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

思路:

暴力思路:

最容易想到的思路就是n^2暴力,每次开始设一个栈,找最长回文。

动态规划:

对于一个字符串有两种情况,就是回文和非回文,那么把他左右两边各加一个字符判断新字符串是不是回文,就分三种情况:

 1、之前的字符串不是回文串,你加什么都不是回文串

 2、之前的字符串是回文串,如果新加的两个字符相等,那么当前是回文串。
 
 3、之前的字符串是回文串,如果新加的两个字符不相等,那么当前不是回文串。

用代码可以表示为 s[i]==s[j]&&dp[i-1][j-1]
其中dp[i][j]代表i~j是否为回文串,10否。

不难看出,每次当前字符串的判断都要依赖小于它两个字符的字符串的判断,所以遍历顺序为长度的从小到的,即外层r为长度,内层从0~len。

Mancher:

不会,回头一定补上。

代码:

class Solution
{
public:
    string longestPalindrome(string s)
    {
        int n = s.length();
        int max = 0, begin=0, len=1;
        vector<vector<int>> dp(n, vector<int>(n));
        for (int i = 0; i < n; ++i)
            dp[i][i] = true;
        for (int r = 2; r <= n; ++r)
            for (int i = 0; i + r - 1 < n; ++i)
            {
                int j = i + r - 1;
                if(j==i+1&&s[i]==s[j])
                    dp[i][j] = true;
                else if(j!=i+1)
                    dp[i][j] = (s[i] == s[j]) && dp[i + 1][j - 1];
                if(dp[i][j])
                    begin = i, len = r;
            }
        return s.substr(begin, len);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值