leetcode #5 最长回文字符串(Mancher留坑)
题目:给你一个字符串 s,找到 s 中最长的回文子串。
示例:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
思路:
暴力思路:
最容易想到的思路就是n^2暴力,每次开始设一个栈,找最长回文。
动态规划:
对于一个字符串有两种情况,就是回文和非回文,那么把他左右两边各加一个字符判断新字符串是不是回文,就分三种情况:
1、之前的字符串不是回文串,你加什么都不是回文串
2、之前的字符串是回文串,如果新加的两个字符相等,那么当前是回文串。
3、之前的字符串是回文串,如果新加的两个字符不相等,那么当前不是回文串。
用代码可以表示为 s[i]==s[j]&&dp[i-1][j-1]
其中dp[i][j]代表i~j是否为回文串,1是0否。
不难看出,每次当前字符串的判断都要依赖小于它两个字符的字符串的判断,所以遍历顺序为长度的从小到的,即外层r为长度,内层从0~len。
Mancher:
不会,回头一定补上。
代码:
class Solution
{
public:
string longestPalindrome(string s)
{
int n = s.length();
int max = 0, begin=0, len=1;
vector<vector<int>> dp(n, vector<int>(n));
for (int i = 0; i < n; ++i)
dp[i][i] = true;
for (int r = 2; r <= n; ++r)
for (int i = 0; i + r - 1 < n; ++i)
{
int j = i + r - 1;
if(j==i+1&&s[i]==s[j])
dp[i][j] = true;
else if(j!=i+1)
dp[i][j] = (s[i] == s[j]) && dp[i + 1][j - 1];
if(dp[i][j])
begin = i, len = r;
}
return s.substr(begin, len);
}
};