逆波兰表达式求值
给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为 ‘+’、‘-’、‘*’ 和 ‘/’ 。
- 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
思路一
var evalRPN = function (tokens) {
let arr = []
for (let token of tokens) {
if (["+", "-", "*", "/"].includes(token)) {
let b = arr.pop()
let a = arr.pop()
let result
if (token === "+") {
result = a + b
} else if (token === "-") {
result = a - b
} else if (token === "*") {
result = a * b
} else {
result = Math.trunc(a / b)
}
arr.push(result)
} else {
arr.push(parseInt(token))
}
}
return arr.pop()
};
讲解
因为 arr.pop() 会改变原数组,所以使用了之后,可以保证数组中只有没使用的数值和最新计算的数值了
Math.trunc() 不会将数字向上/向下舍入到最接近的整数,而只是删除小数
思路二
var evalRPN = function (tokens) {
let stack = []
let index = -1
for (let token of tokens) {
if (token === '+') {
index--;
stack[index] += stack[index + 1];
} else if (token === '-') {
index--;
stack[index] -= stack[index + 1];
} else if (token === '*') {
index--;
stack[index] *= stack[index + 1];
} else if (token === '/') {
index--;
stack[index] = Math.trunc(stack[index] / stack[index + 1]);;
} else {
index++;
stack[index] = parseInt(token);
}
}
return stack[index]
};
讲解
因为 index 是通过 ++;– 控制,所以它的初始值要设置为 -1 ,因此每次遇到操作值的时候,index++ 并存值,遇到计算操作符,index– 并将之前存入的数值根据操作符进行操作。
因为 index++ 之后再 index– ,可以保证当前 stack[index] 和 stack[index+1] 有值