你将得到一个字符串数组 A。
每次移动都可以交换 S 的任意两个偶数下标的字符或任意两个奇数下标的字符。
如果经过任意次数的移动,S == T,那么两个字符串 S 和 T 是 特殊等价 的。
例如,S = “zzxy” 和 T = “xyzz” 是一对特殊等价字符串,因为可以先交换 S[0] 和 S[2],然后交换 S[1] 和 S[3],使得 “zzxy” -> “xzzy” -> “xyzz” 。
现在规定,A 的 一组特殊等价字符串 就是 A 的一个同时满足下述条件的非空子集:
该组中的每一对字符串都是 特殊等价 的
该组字符串已经涵盖了该类别中的所有特殊等价字符串,容量达到理论上的最大值(也就是说,如果一个字符串不在该组中,那么这个字符串就 不会 与该组内任何字符串特殊等价)
返回 A 中特殊等价字符串组的数量。
示例 1:
输入:[“abcd”,“cdab”,“cbad”,“xyzz”,“zzxy”,“zzyx”]
输出:3
解释:其中一组为 [“abcd”, “cdab”, “cbad”],因为它们是成对的特殊等价字符串,且没有其他字符串与这些字符串特殊等价。
另外两组分别是 [“xyzz”, “zzxy”] 和 [“zzyx”]。特别需要注意的是,“zzxy” 不与 “zzyx” 特殊等价。
示例 2:
输入:[“abc”,“acb”,“bac”,“bca”,“cab”,“cba”]
输出:3
解释:3 组 [“abc”,“cba”],[“acb”,“bca”],[“bac”,“cab”]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/groups-of-special-equivalent-strings
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
# 若此字符串奇数位、偶数位所有字符串都等于彼字符串奇数位、偶数位所有字符串则这两字符串特殊等价,找出所有特殊等价字符串再去重即可
class Solution:
def numSpecialEquivGroups(self, A: List[str]) -> int:
# i[::2]代表此字符串所有偶数位字符,sotred()是为了便于比较,i[1::2]代表此字符串所有奇数位字符
return len(set("".join(sorted(i[::2]) + sorted(i[1::2])) for i in A))