离散时间信号处理/Week1_Appendix

离散时间信号处理/Week1_Appendix

教材:Oppenheim离散时间信号处理(第三版) 课程:MITx 6.341x(来源于edX)

edX学习资料地址:https://courses.edx.org/courses/course-v1:MITx+6.341x_2+2T2016/course/

第一周课程所需储备知识整理如下

CH2 离散时间信号与系统

2.1 离散时间信号

离散时间复指数VS连续时间复指数、正弦序列VS正弦信号

  • n n n总是整数。此时,频率为( ω + 2 π r \omega+2\pi r ω+2πr)的复指数序列(其中 r r r为任意整数)不能区分开,这一点对正弦序列同样成立。
  • n n n的周期性问题。在连续时间情况下,正弦信号和复指数信号都是时间上的周期信号,若离散时间正弦序列以 N N N为周期,需要满足 ω 0 N = 2 π k \omega_0 N=2\pi k ω0N=2πk

2.2 离散时间系统

  • 无记忆系统
  • 线性系统
  • 时不变系统
  • 因果性
  • 稳定性

2.3 线性时不变(LTI)系统

一个线性时不变系统可以完全由它的单位脉冲响应 h [ n ] h[n] h[n]来表征,定义卷积和 y [ n ] = x [ n ] ∗ h [ n ] y[n]=x[n]*h[n] y[n]=x[n]h[n]

2.4 线性时不变系统的性质

2.5 线性常系数差分方程

如果一个系统是由一个线性常系数差分方程所表征的,并且进一步限定是线性、时不变和因果的,那么它的解就是唯一的。

2.6 离散时间信号与系统的频域表示

  • LTI系统频率响应的概念对连续时间系统和离散时间系统基本上是相同的。一个重要的不同点是离散时间LTI系统的频率响应总是频率 ω \omega ω的周期函数,且周期为 2 π 2\pi 2π,即 H ( e j ( ω + 2 π ) ) = H ( e j ω ) , 对 所 有 ω H(e^{j(\omega+2\pi)})=H(e^{j\omega}),对所有\omega H(ej(ω+2π))=H(ejω)ω因为 H ( e j ω ) H(e^{j\omega}) H(ejω) 2 π 2\pi 2π为周期,并且频率 ω \omega ω ω + 2 π \omega+2\pi ω+2π又不能区分开,因此只需要在长为 2 π 2\pi 2π区间内,即 0 ≤ ω ≤ 2 π 0\leq \omega \leq2\pi 0ω2π − π < ω ≤ π -\pi<\omega \leq\pi π<ωπ内标出 H ( e j ω ) H(e^{j\omega}) H(ejω)就够了。简单起见并与连续时间情况一致,一般在区间 − π < ω ≤ π -\pi<\omega \leq\pi π<ωπ内给出 H ( e j ω ) H(e^{j\omega}) H(ejω)的特性。相对于此区间,“低频”就在靠近于零处的频率,“高频”在靠近于“ ± π \pm \pi ±π”的频率。
  • 滑动平均系统的频率响应中, ∣ H ( e j ω ) ∣ |H(e^{j\omega})| H(ejω)在高频跌落,而 ∠ H ( e j ω ) \angle H(e^{j\omega}) H(ejω),即 H ( e j ω ) H(e^{j\omega}) H(ejω)的相位,随 ω \omega ω线性变化。高频衰减表示系统对输入序列中的快速变化起到平滑作用。滑动平均系统频率响应
  • 复指数序列是线性时不变系统的特征函数。特别地,但输入为 x [ n ] = e j ω n , − ∞ < n < ∞ x[n]=e^{j\omega n},-\infty<n<\infty x[n]=ejωn,<n<时,单位脉冲响应为 h [ n ] h[n] h[n]的LTI系统的相应输出为 y [ n ] = H ( e j ω ) e j ω n y[n]=H(e^{j\omega})e^{j\omega n} y[n]=H(ejω)ejωn
    式中 H ( e j ω ) = ∑ k = − ∞ ∞ h [ k ] e − j ω k H(e^{j\omega})=\sum ^\infty _{k=-\infty} h[k] e^{-j\omega k} H(ejω)=k=h[k]ejωk
    因此, e j ω n e^{j\omega n} ejωn是该系统的特征函数,相应的特征值为 H ( e j ω ) H(e^{j\omega}) H(ejω)
  • 稳态响应与暂态响应
    考虑输入信号 x [ n ] = e j ω n u [ n ] x[n]=e^{j\omega n}u[n] x[n]=ejωnu[n],即在任意时刻加上复指数输入。
    利用卷积和,一个单位脉冲响应为 h [ n ] h[n] h[n]的因果线性时不变系统的相应输出是
    y [ n ] = { 0 , n < 0 ( ∑ k = 0 n h [ k ] e − j ω k ) e j ω n , n ≥ 0 y[n]=\left\{ \begin{array}{rcl} 0, &n<0\\ \left(\sum ^n _{k=0} h[k]e^{-j\omega k} \right)e^{j\omega n}, & n \geq 0 \end{array} \right. y[n]={0,(k=0nh[k]ejωk)ejωn,n<0n0
    如果仅考虑 n ≥ 0 n \geq 0 n0时的输出,可以写成
    y [ n ] = ( ∑ k = 0 ∞ h [ k ] e − j ω k ) e j ω n − ( ∑ k = n + 1 ∞ h [ k ] e − j ω k ) e j ω n = H ( e j ω ) e j ω n − ( ∑ k = n + 1 ∞ h [ k ] e − j ω k ) e j ω n \begin{aligned} y[n] &=\left(\sum_{k=0}^{\infty}h[k]e^{-j\omega k}\right)e^{j\omega n}-\left(\sum_{k=n+1}^{\infty}h[k]e^{-j\omega k}\right)e^{j\omega n} \\ &=H(e^{j\omega})e^{j\omega n}-\left(\sum_{k=n+1}^{\infty}h[k]e^{-j\omega k}\right)e^{j\omega n} \end{aligned} y[n]=(k=0h[k]ejωk)ejωn(k=n+1h[k]ejωk)ejωn=H(ejω)ejωn(k=n+1h[k]ejωk)ejωn
    其中第一项是稳态响应,第二项是暂态响应。
    考虑第2项(式2.129):
    ∣ ∑ k = n + 1 ∞ h [ k ] e − j ω k e j ω n ∣ ≤ ∑ k = n + 1 ∞ ∣ h [ k ] ∣ ≤ ∑ k = 0 ∞ ∣ h [ k ] ∣ \left|\sum_{k=n+1}^{\infty}h[k]e^{-j\omega k}e^{j\omega n} \right| \leq \sum^\infty _{k=n+1} |h[k]| \leq \sum^\infty _{k=0} |h[k]| k=n+1h[k]ejωkejωnk=n+1h[k]k=0h[k]
    如果 h [ n ] h[n] h[n]是有限长的话,即 h [ n ] h[n] h[n]仅在 0 ≤ n ≤ M 0 \leq n \leq M 0nM内不为零,那么 n > M − 1 n>M-1 n>M1时暂态响应为零。
    如果
    ∑ k = 0 ∞ ∣ h [ k ] ∣ ≤ ∞ \sum^\infty _{k=0} |h[k]| \leq \infty k=0h[k]
    那么该系统就是稳定的。由(式2.129),对于稳定系统,暂态响应一定随 n n n ∞ \infty 而变得越来越小。因此,暂态响应逐渐衰减的充分条件就是系统是稳定的。
  • 稳定性是频率响应函数存在的充分条件

2.7 用傅里叶变换表示序列

综合公式(傅里叶逆变换): x [ n ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x[n]=\frac1{2\pi} \int^{\pi}_{-\pi} X(e^{j\omega})e^{j\omega n}d\omega x[n]=2π1ππX(ejω)ejωndω
分析公式(傅里叶变换): X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X(e^{j\omega})=\sum ^\infty _{n=-\infty} x[n] e^{-j\omega n} X(ejω)=n=x[n]ejωn确定哪一类信号可以用综合公式来表示的问题就等效于考虑分析公式中无限项和的收敛问题,也就是分析公式的求和中各项必须满足什么条件,才使得 ∣ X ( e j ω ) ∣ < ∞ , 对 所 有 ω |X(e^{j\omega})|<\infty,对所有\omega X(ejω)<ω

  • 可证明:若 x [ n ] x[n] x[n]绝对可加的,那么 X ( e j ω ) X(e^{j\omega}) X(ejω)存在,且该级数一致收敛于一个 ω \omega ω的连续函数。
  • 任何稳定系统,即具有绝对可加的单位脉冲响应的系统,都有一个有限且连续的频率响应。
  • 任何有限长序列都是绝对可加的,从而都有一个傅里叶变换表示在LTI系统范围内,任何FIR系统都一定是稳定的,因此都有一个有限且连续的频率响应;然而,当一个序列属无限长时,就关心无限求和的收敛问题。

2.8 傅里叶变换的对称性质

傅里叶变换的对称性质
一个共轭对称序列 x e [ n ] x_e[n] xe[n]定义为具有 x e [ n ] = x e ∗ [ − n ] x_e[n]=x_e^*[-n] xe[n]=xe[n]的序列,一个共轭反对称序列 x o [ n ] x_o[n] xo[n]定义为具有 x o [ n ] = − x o ∗ [ − n ] x_o[n]=-x_o^*[-n] xo[n]=xo[n]的序列。
傅里叶变换的对称性质

2.9 傅里叶变换定理

傅里叶变换定理
傅里叶变换定理
傅里叶变换对
傅里叶变换对

2.10 离散时间随机信号

在难以或不合需要精确地描述一个信号的情况下,把信号建模成一个随机过程是有用的。一个随机信号就是一组离散时间信号的集合,它是由一组概率密度函数来表征的。

CH3 z变换

3.1 z变换

序列 x [ n ] x[n] x[n]的傅里叶变换: X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X(e^{j\omega})=\sum ^\infty _{n=-\infty} x[n] e^{-j\omega n} X(ejω)=n=x[n]ejωn序列 x [ n ] x[n] x[n] z z z变换: X ( z ) = ∑ n = − ∞ ∞ x [ n ] z − n X(z)=\sum ^\infty _{n=-\infty} x[n]z^{-n} X(z)=n=x[n]zn当傅里叶变换存在,就是令 z = e j ω z=e^{j\omega} z=ejω X ( z ) X(z) X(z),也就是对于 ∣ z ∣ = 1 , z |z|=1, z z=1,z变换就相应于傅里叶变换,即 z z z变换在单位圆上的求值对应于傅里叶变换。
注意:现在把傅里叶变换解释成在 z z z平面单位圆上的 z z z变换,在 z z z平面上 2 π r a d 2 \pi rad 2πrad的改变相当于绕单位圆一周,然后又重新回到起始点上。

  • 傅里叶变换的一致收敛要求序列是绝对可加的, z z z变换的收敛条件为
    ∣ X ( r e j ω ) ∣ ≤ ∑ n = − ∞ ∞ ∣ x [ n ] r − n ∣ < ∞ |X(re^{j\omega})| \leq \sum ^\infty _{n=- \infty} |x[n]r^{-n}|< \infty X(rejω)n=x[n]rn<

  • z z z变换是一个洛朗级数。一个洛朗级数( z z z变换)就代表了在收敛于内每个点上的一个解析函数,因此 z z z变换及其全部导数在收敛域内也一定是 z z z的连续函数。如果收敛域包括单位圆,那么傅里叶变换及其对 ω \omega ω的全部导数一定是 ω \omega ω的连续函数。对于傅里叶变换,该序列必须是绝对可加的,也就是一个稳定序列;对于 z z z变换,要求 x [ n ] z − n x[n]z^{-n} x[n]zn绝对可加。

  • ∑ n = − ∞ ∞ ∣ x [ n ] ∣ ∣ z ∣ − n < ∞ \sum ^\infty _{n=- \infty} |x[n]||z|^{-n}< \infty n=x[n]zn<
    收敛域由以原点为中心的圆环组成。

3.2 z变换收敛域的性质

暂略

3.3 z逆变换

暂略

3.4 z变换性质

暂略

3.5 z变换与LTI系统

暂略

3.6 单边z变换

暂略

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值