二马路
码龄5年
  • 137,310
    被访问
  • 63
    原创
  • 48,832
    排名
  • 306
    粉丝
关注
提问 私信

个人简介:但行前路,莫问前程。

  • 加入CSDN时间: 2017-05-29
博客简介:

qq_38972634的博客

查看详细资料
  • 4
    领奖
    总分 731 当月 65
个人成就
  • 获得481次点赞
  • 内容获得64次评论
  • 获得1,484次收藏
创作历程
  • 2篇
    2022年
  • 40篇
    2021年
  • 19篇
    2020年
  • 2篇
    2019年
成就勋章
TA的专栏
  • STM32
    8篇
  • C语言
    5篇
  • Matlab
    6篇
  • Python
    3篇
  • 控制实践
    5篇
  • 现代控制理论
    2篇
  • 自动控制原理
    30篇
兴趣领域 设置
  • 人工智能
    pytorch
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

非线性之描述函数法

【自控笔记】非线性系统&描述函数法一、非线性系统概述一般来说,系统的非线性部分在一定条件下可以线性化处理,并可以应用线性理论研究的系统称为非本质非线性系统;若非线性部分线性化后误差较大,无法用线性理论来分析的系统称为本质非线性系统。二、非线性系统的特点首先,非线性系统区别于线性系统的最大特点是不满足叠加定理。其次,非线性系统的响应受初始条件或外作用影响。第三,由于非线性系统的响应不是唯一的,故不存在系统是否稳定的笼统概念。第四,非线性系统在外作用为零的情况下,可能会产生一定频率和振幅的
原创
发布博客 2022.01.12 ·
436 阅读 ·
0 点赞 ·
0 评论

离散系统的稳定性分析

【自控笔记】6.5 离散系统的稳定性分析一、离散系统稳定的充要条件线性连续系统的稳定的充要条件是特征方程的根全部位于左半s平面。在离散系统中,根据s平面与z平面之间的映射关系:s=jω,z=ejωTs=jω,z=e^{jωT}s=jω,z=ejωT, 可以知道离散系统中的稳定域为以原点为圆心的单位原内。二、劳斯稳定判据三、离散系统的稳态误差分析...
原创
发布博客 2022.01.11 ·
2071 阅读 ·
1 点赞 ·
0 评论

【现控】时不变连续系统

【现控】2.1 时不变连续系统一、齐次方程的解1、无穷级数法(1)状态转移矩阵2、拉普拉斯变换法3、凯莱哈密顿二、非齐次方程的解1、积分法2、拉普拉斯变换法三、状态矢量的线性变换1、化A为对角阵1、化A为约旦阵...
原创
发布博客 2021.08.29 ·
105 阅读 ·
3 点赞 ·
0 评论

【现控】系统状态空间表达式

【现控】1 系统状态空间表达式一、基本概念状态:状态是变化的,是时域里的一系列变量。它可以数字、曲线或者其他什么更为抽象的东西描述。状态变量:能够完全描述系统的最小一组变量。可抽象可具体。状态空间:以状态变量构成的n维状态空间。状态矢量:状态矢量是状态空间中的一点,由状态变量线性合成。状态方程:由系统的状态变量构成的一阶微分方程组。输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式。状态空间表达式:状态方程和输出方程总和起来,构成对一个系统完整的动态描述,是一种完全的描述。状
原创
发布博客 2021.08.28 ·
4243 阅读 ·
4 点赞 ·
0 评论

离散系统的数学模型

【自控笔记】6.4 离散系统的数学模型一、离散系统数学定义离散系统:输入序列r(n)r(n)r(n)与输出序列c(n)c(n)c(n)的一种变换关系,记作c(n)=F[r(n)]c(n)=F[r(n)]c(n)=F[r(n)]。如果这种变换关系为线性的,则称为线性离散系统;如果是非线性的则称为非线性离散系统。线性离散系统满足叠加定理,如果这种输入输出关系不随时间的改变而改变,则该系统称为线性定常离散系统。二、差分与差分方程1、差分设连续函数为y(k)y(k)y(k), 其一阶前向差分为:Δy(
原创
发布博客 2021.08.23 ·
1675 阅读 ·
6 点赞 ·
0 评论

Z变换理论梳理

【自控笔记】6.3 Z变换理论本文框架如下:一、Z变换定义Z变换是研究离散系统的数学工具,与拉式变换在连续系统中的地位是一样的。Z变换只对离散信号而言,Z变换对连续信号无意义。它并不是一种新的数学变换,它只是在离散信号拉普拉斯变换中的eTse^{Ts}eTs转换成zzz。设连续信号的拉普拉斯变换为F(s)=L[f(t)]=∫0∞f(t)e−sTdtF(s)=L[f(t)]=\int_0^∞f(t)e^{-sT}dtF(s)=L[f(t)]=∫0∞​f(t)e−sTdt连续信号f(t)f(t)
原创
发布博客 2021.08.23 ·
645 阅读 ·
3 点赞 ·
0 评论

零阶保持器

【自控笔记】6.2零阶保持器理想低通滤波器在现实中是不存在的,在工程中,最常用的低通滤波器是零阶保持器。这种保持器在一个周期T内的值为常数,其导数为0,故因此而得名。一、零阶保持器的作用零阶保持器的作用很简单,就是把输入它的信号保持一个周期T,其它什么也不干。如上图所示,当输入信号为δ(t)δ(t)δ(t)是,零阶保持器的输出就是δ(t)δ(t)δ(t)的值,并保持一个周期。同理当输入信号为e∗(t)e^*(t)e∗(t)时,其输出就是各个离散信号点保持一个周期,还原出连续信号。由此往下,研究
原创
发布博客 2021.08.21 ·
9224 阅读 ·
19 点赞 ·
0 评论

信号采样与采样定理

【自控笔记】6.1信号采样与采样定理一、离散系统概述1、离散系统定义:系统中有一处或几处信号是脉冲串或数码的系统。2、离散系统的分类:离散系统可以分为采样系统和数字系统两大类。采样系统具有时间离散,数值连续的特点;而数字系统具有时间离散,数值量化的特点。3、离散系统的研究方法:用Z变换建立离散系统的数学模型,克服了使用拉氏变换建立传函产生超越函数的障碍。二、采样过程及数学描述把连续信号变成离散信号的过程,叫做采样过程。在理想采样中,采样过程可以看做一个单位脉冲序列δT(t)δ_T(t)δT​(
原创
发布博客 2021.08.21 ·
1608 阅读 ·
6 点赞 ·
0 评论

【课设必备】-Matlab设计串联滞后超前校正-纯干货

Matlab设计串联滞后超前校正串联滞后超前校正步骤:1、确定原系统。2、根据期望截止频率ωc∗ω_c^*ωc∗​,确定超前装置最大超前角φm=γ∗−γ0(ωc∗)+6°φ_m=\gamma^*-\gamma_0(ω_c^*)+6°φm​=γ∗−γ0​(ωc∗​)+6°。3、求解超前校正参数a=1+sinφm1−sinφma=\frac{1+sinφ_m}{1-sinφ_m}a=1−sinφm​1+sinφm​​4、根据校正点与两个转折频率处的倍频关系求出两个转折频率,得出超前校正传函。5、使用
原创
发布博客 2021.08.20 ·
3464 阅读 ·
11 点赞 ·
2 评论

【课设必备】-Matlab设计串联滞后校正-纯干货

Matlab设计串联滞后校正串联滞后校正步骤:1、确定原系统。2、根据期望裕度挖掘相角储备,找出校正点处ωcω_cωc​。3、利用校正点处20lgb的对称性求解b。4、根据校正点与两个转折频率处的倍频关系求出两个转折频率,得出校正传函。5、进行串联校正,并验算校正后指标是否满足要求。例:已知单位反馈系统的系统开环传递函数G0=3000.2s+1G_0=\frac{300}{0.2s+1}G0​=0.2s+1300​ 请设计串联滞后校正装置,使校正后系统相角裕度γ≥45°\gamma≥45°γ≥
原创
发布博客 2021.08.20 ·
1917 阅读 ·
7 点赞 ·
0 评论

【课设必备】-Matlab设计串联超前校正-纯干货

Matlab设计串联超前校正串联超前校正步骤:1、确定原系统。2、求解原系统相角裕度γ\gammaγ(γ\gammaγ不足)。3、设计超前网络最大超前相角φmφ_mφm​,并距此来求解参数a。4、根据10lga10lga10lga找出ωmω_mωm​,根据a倍频关系求出两个转折频率,得出校正传函。5、进行串联校正,并验算校正后指标是否满足要求。例:已知系统开环传函G0=3000.5s+1G_0=\frac{300}{0.5s+1}G0​=0.5s+1300​ 请设计超前校正网络,使校正后系统相
原创
发布博客 2021.08.20 ·
2821 阅读 ·
8 点赞 ·
0 评论

线性系统频域校正-校正必读

【自控笔记】5.7线性系统频域校正一、三频段划分为了更方便地研究对数幅频特性与系统性能指标的关系,通常将L(ω)L(ω)L(ω)人为地分成三个频段:低频段、中频段和高频段,如下图所示:低频段主要是指第一个转折频率以左的频段。这一频段的特性完全是由积分环节和开环增益决定,其对应的传递函数为Ksv\frac{K}{s^v}svK​。中频段是指截止频率ωcω_cωc​附近的频段。这一频段集中反映了闭环系统动态响应的平稳性和快速性,一般希望对数幅频特性曲线以-20dB/dec的斜率穿过0dB线,这样的系
原创
发布博客 2021.08.20 ·
520 阅读 ·
5 点赞 ·
0 评论

相角裕度与幅值裕度

【自控笔记】5.6稳定裕度一、相角裕度所谓相角裕度,就是系统在相角方面距离离开临界稳定状态还拥有的储备量。设系统截止频率为ωcω_cωc​,幅值满足条件A(ωc)=∣G(jωcH(ωc)∣=1A(ω_c)=|G(jω_cH(ω_c)|=1A(ωc​)=∣G(jωc​H(ωc​)∣=1,则相角裕度满足∠G(jωc)−γ=−180°∠G(jω_c)-γ=-180°∠G(jωc​)−γ=−180°即γ=180°+∠G(jωc)γ=180°+∠G(jω_c)γ=180°+∠G(jωc​)当γ>0γ
原创
发布博客 2021.08.18 ·
7023 阅读 ·
8 点赞 ·
2 评论

频域稳定判据-也不过如此

【自控笔记】5.5频域稳定判据一、幅角原理幅角原理看上去比较抽象,但实际上不算难,理解幅角原理是学习频域稳定判据的数学基础。先来看幅角原理的结论:在S平面上的封闭曲线A域内,共有函数F(s)的P个极点和Z个零点,且封闭曲线A不穿过F(s)的任何一个极点和零点。当点s顺时针沿封闭曲线A变化一圈时,函数F(s)在F平面上的轨迹B将包围原点R=P-Z周(其中,零点个数考虑重根数,R<0顺时针,R>0逆时针)。这个结论是什么意思呢?说人话就是:有两个复数平面,一个是关于点的S平面,一个是关于函
原创
发布博客 2021.08.18 ·
867 阅读 ·
8 点赞 ·
2 评论

掌握到胃-奈氏图与伯德图的绘制

【自控笔记】5.4绘制频率特性曲线一、开环奈奎斯特曲线的绘制先上步骤:①确定起点G(j0)和终点G(j∞)。②中间段由s平面零极点矢量随s=jω变化规律绘制。③必要时可求出G(jω)与实轴、虚轴的交点。再看细节:对于一个系统的传递函数,可以将其分解成N个环节串联的形式,对其进行取模和取相角运算,容易知道,系统开环传递函数的频率特性在同一频率下表现为幅值相乘,相角相加。于是,由起点处有ω=0,在终点处有ω→∞,有所以奈奎斯特图的起点一般都在正实轴或无穷远处,而终止于原点。下面以一个
原创
发布博客 2021.08.17 ·
4440 阅读 ·
7 点赞 ·
0 评论

典型环节的频率特性(建议收藏)

【自控笔记】5.3典型环节频率特性一、最小相位系统二、非最小相位系统控制系统种类繁多,传递函数复杂,但任何形式的传递函数都是由有限的典型环节组成。因此,掌握典型环节的频率特性是使用频域法分析系统的基础。如下表所示,构成系统的最基本环节可以大致分为最小相位环节和非最小相位环节。由它们可以构成最小相位系统和非最小相位系统。最小相位系统相角变化量的绝对值最小,并且对数幅频特性与对数相频特性之间存在一一对应的关系,而非最小相位系统不具有这种性质。一、最小相位系统最小相位系统:所有零极点都不在S右半平面的
原创
发布博客 2021.08.15 ·
5802 阅读 ·
10 点赞 ·
1 评论

Matlab绘制频率特性

【自控笔记】5.2频率特性的四种表现方式及Matlab绘制系统的频率特性G(jω)可以用函数形式表示,也可以用图形和曲线表示。它们分别是频率特性图、幅相特性图、对数频率特性图、对数幅相特性图。四种表示方式对比如下:下面以T=1的惯性环节为例,绘制四种表示图。一、频率特性图频率特性曲线包括幅频特性曲线和相频特性曲线。幅频特性曲线是幅值|G(jω)|的变化规律。相频特性曲线是描述相角∠G(jω)随ω变化的规律。二、奈奎斯特图奈奎斯特图是一种极坐标表示方法,即用一根曲线同时将模值和相角同时
原创
发布博客 2021.08.13 ·
3113 阅读 ·
5 点赞 ·
1 评论

频率特性3种定义

【自控笔记】5.1频率特性基本概念系统的频率响应,是指输入为正弦信号情况下的系统稳态响应。反映了正弦响应的幅值、相角随输入频率变化的规律性。将一个确定的正弦信号,作用于一个稳定系统,当时间趋于无穷时,系统的闭环极点对应的模态将衰减为零。系统的频率响应为一个与输入同频率正弦信号。定义一:幅值比、相角差定义输出信号与输入信号的幅值之比为幅频特性,相位之差为相频特性。频率特性描述了不同频率下系统传递正弦信号的能力。定义一有一定的物理意义。定义二:代数形式定义二是把系统中的s直接用jω替换
原创
发布博客 2021.08.13 ·
3776 阅读 ·
6 点赞 ·
0 评论

广义根轨迹

【自控笔记】4.3广义根轨迹在控制系统理论中,把以非开环增益K(或K*)为可变参数绘制的根轨迹称为广义根轨迹或参数根轨迹。一、参数根轨迹绘制参数根轨迹的关键是构造出等效开环传函,然后根据8大法则绘制即可。构造等效开环传函步骤如下:1、写出闭环系统的特征方程2、将含参数项做为分子,其余各项做为分母二、零度根轨迹实际上,根轨迹8大法则绘制出的根轨迹是对应负反馈回路的,也被称为180°根轨迹。而零度根轨迹,就是对应于正反馈系统的根轨迹,其模值条件为1,相角条件为2kπ。由于零度根轨迹服从2kπ的
原创
发布博客 2021.08.11 ·
342 阅读 ·
4 点赞 ·
0 评论

根轨迹绘制8大法则

【自控笔记】4.2根轨迹绘制法则法则1:根轨迹的分支数等于闭环特征方程的阶数,并且对称于实轴。法则2:根轨迹起始于开环极点,或终于开环零点,或有n-m条根轨迹终于无穷远。法则3:实轴上的根轨迹的右端零极点个数和为奇数。法则4:根之和,闭环极点之和等于开环极点之和等于常数。法则5:当开环极点数n大于开环零点数m时,将有n-m条根轨迹分支沿着渐近线趋向于无穷远处。渐近线与实轴的夹角 与实轴的交点分别为:法则6: l条根轨迹分支在S平面上相遇后又立即分开的点,称为分离点。...
原创
发布博客 2021.08.11 ·
1367 阅读 ·
4 点赞 ·
0 评论
加载更多